
GNU

Funded by the
European Union

taler.net
taler@twitter

Christian Grothoff
grothoff@taler.net

https://taler.net/
https://twitter.com/taler

Agenda

Motivation & Background

GNU Taler: Introduction

Component Zoo

Protocol Basics

Attacks & Defenses

Offline payments

Programmable money: Age restrictions

Software development & deployment

Performance

Blockchain integration: Project Depolymerization

Future Work & Conclusion

Surveilance concerns

▶ Everybody knows about Internet surveilance.
▶ But is it that bad?

▶ You can choose when and where to use the Internet
▶ You can anonymously access the Web using Tor
▶ You can find open access points that do not require

authentication
▶ IP packets do not include your precise location or name
▶ ISPs typically store this meta data for days, weeks or months

Surveilance concerns

▶ Everybody knows about Internet surveilance.
▶ But is it that bad?

▶ You can choose when and where to use the Internet
▶ You can anonymously access the Web using Tor
▶ You can find open access points that do not require

authentication
▶ IP packets do not include your precise location or name
▶ ISPs typically store this meta data for days, weeks or months

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

“I think one of the big things that we need to do, is we need to get
away from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the
user, in terms of being able to divorce their access from their

identity.” –Edward Snowden, IETF 93 (2015)

A Social Problem
This was a question posed to RAND researchers in 1971:

“Suppose you were an advisor to the head of the KGB,
the Soviet Secret Police. Suppose you are given the as-
signment of designing a system for the surveillance of all
citizens and visitors within the boundaries of the USSR.
The system is not to be too obtrusive or obvious. What
would be your decision?”

“I think one of the big things that we need to do, is we need to get
away from true-name payments on the Internet. The credit card
payment system is one of the worst things that happened for the
user, in terms of being able to divorce their access from their

identity.” –Edward Snowden, IETF 93 (2015)

What is worse:

▶ When you pay by CC, the information includes your name

▶ When you pay in person with CC, your location is also known

▶ You often have no alternative payment methods available

▶ You hardly ever can use someone else’s CC

▶ Anonymous prepaid cards are difficult to get and expensive

▶ Payment information is typically stored for at least 6 years

Banks have Problems, too!

3D secure (“verified by visa”) is a nightmare:

▶ Complicated process

▶ Shifts liability to
consumer

▶ Significant latency

▶ Can refuse valid requests

▶ Legal vendors excluded

▶ No privacy for buyers

Legacy M erchant Host ed Card Paym ent w it h Acquirer Support ed 3 DS (Current)

3 DS is used t o add confidence t hat t he payer is w ho t hey say t hey are and im port ant ly in t he event of a disput e liabilit y shift t o t he Issuer.

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) PSP [Acquirer]

Payee (Merchant) [Acceptor] Site

Payee (Merchant) [Acceptor] Site

Payer (Shopper) [Cardholder] Browser

Payer (Shopper) [Cardholder] Browser

Browser Form Filler

Browser Form Filler

Card Schem e Directory

Card Schem e Directory

Issuing Bank [Issuer] Website

Issuing Bank [Issuer] Website

Issuing Bank [Issuer]

Issuing Bank [Issuer]

HTTPS

Est ablish Paym ent Obligat ion

Present Check-out page with Pay But ton

Select Card Paym ent Method

alt

Form Fill

User Fills Form

Card Paym ent Init ia t ion

Paym ent Init iat ion

opt

Store Card

Authorise

3 DS part of f low

BIN to URL lookup (VAReq m essage)

Lookup URL from BIN

“ PING”

“ PING” response

URL

3DS redirect (PAReq m essage)

3DS redirect (PAReq m essage)

3DS invoke

3DS challenge

3DS response (PARes m essage)

3DS response (PARes m essage)

3DS response (PARes m essage)

3DS response (PARes m essage)

Verificat ion of PARes signature

End of 3 DS

Authorisat ion Request

Authorisat ion Response

Authorisat ion Response

Not if icat ion

Result Page

Request for Set t lem ent process (could be im m ediat e , bat ch (e .g. da ily) or a ft er som e days)

a lt

Capture

Auto Capture in batch processing at end-of-day

Capture

Fulf ilm ent

Provide products or services

Online credit card payments will be replaced, but with what?

The Bank’s Problem
▶ Global tech companies push oligopolies

▶ Privacy and federated finance are at risk

▶ Economic sovereignty is in danger

Predicting the Future

▶ Google and Apple will be your bank and run your payment
system

▶ They can target advertising based on your purchase history,
location and your ability to pay

▶ They will provide more usable, faster and broadly available
payment solutions; our federated banking system will be
history

▶ After they dominate the payment sector, they will start to
charge fees befitting their oligopoly size

▶ Competitors and vendors not aligning with their corporate
“values” will be excluded by policy and go bankrupt

▶ The imperium will have another major tool for its financial
warfare

The Distraction: Bitcoin

▶ Unregulated payment system and currency:

⇒ lack of regulation is a feature!

▶ Implemented in free software

▶ Decentralised peer-to-peer system

▶ Decentralised banking requires solving Byzantine consensus

▶ Creative solution: tie initial accumulation to solving consensus

⇒ Proof-of-work advances ledger

⇒ Very expensive banking

The Distraction: Bitcoin

▶ Unregulated payment system and currency:

⇒ lack of regulation is a feature!

▶ Implemented in free software

▶ Decentralised peer-to-peer system

▶ Decentralised banking requires solving Byzantine consensus

▶ Creative solution: tie initial accumulation to solving consensus

⇒ Proof-of-work advances ledger

⇒ Very expensive banking

The Distraction: Bitcoin

▶ Unregulated payment system and currency:

⇒ lack of regulation is a feature!

▶ Implemented in free software

▶ Decentralised peer-to-peer system

▶ Decentralised banking requires solving Byzantine consensus

▶ Creative solution: tie initial accumulation to solving consensus

⇒ Proof-of-work advances ledger

⇒ Very expensive banking

?
Background: https://blockchain.com/charts/

Current average transaction value: ≈ 1000 USD

https://blockchain.com/charts/

?

Bitcoin cryptography is rather primitive:

All Bitcoin transactions are public and linkable!

⇒ no privacy guarantees

⇒ enhanced with “laundering” services

ZeroCoin, CryptoNote (Monero) and ZeroCash (ZCash) offer anonymity.

Do you want to have a libertarian economy?

Do you want to live under total surveillance?

The Bank of International Settlements
Central Bank Digital Currency vs. Cash

The Emergency Act of Canada1

https://www.youtube.com/watch?v=NehMAj492SA (2’2022)

1Speech by Premier Kenney, Alberta, February 2022

https://www.youtube.com/watch?v=NehMAj492SA

GNU Taler: Introduction

GNU Taler

Digital cash, made socially
responsible.

Privacy-Preserving, Practical, Taxable, Free Software, Efficient

What is Taler?
https://taler.net/en/features.html

Taler is

▶ a Free/Libre software payment system infrastructure project

▶ ... with a surrounding software ecosystem

▶ ... and a company (Taler Systems S.A.) and community that
wants to deploy it as widely as possible.

However, Taler is

▶ not a currency or speculative asset

▶ not a long-term store of value

▶ not a network or instance of a system

▶ not decentralized

▶ not based on proof-of-work or proof-of-stake

https://taler.net/en/features.html

Design principles
https://taler.net/en/principles.html

GNU Taler must ...

1. ... be implemented as free software.

2. ... protect the privacy of buyers.

3. ... enable the state to tax income and crack down on illegal
business activities.

4. ... prevent payment fraud.

5. ... only disclose the minimal amount of information
necessary.

6. ... be usable.

7. ... be efficient.

8. ... avoid single points of failure.

9. ... foster competition.

Taler Overview

Exchange

Customer Merchant

Auditor

w
ith
dr
aw

co
in
s deposit

coins

spend coins

verify

Architecture of Taler

Consumer Impact of Taler

▶ Convenient: pay with one click instantly –– in Euro, Dollar,
Yen or Bitcoin

▶ Friction-free security: Payments do not require sign-up,
login or multi-factor authentication

▶ Privacy-preserving: payment requires/shares no personal
information

▶ Bank account: not required

Merchant Impact of Taler

▶ Instant clearance: one-click transactions and instant
clearance at par

▶ Easy & compliant: GDPR & PCI-DSS compliance-free and
without any effort

▶ Major profit increase: efficient protocol + no fraud =
extremely low costs

▶ 1-click checkout: without Amazon and without false
positives in fraud detection

Taler: Unique Regulatory Features for Central Banks
https://www.snb.ch/en/mmr/papers/id/working_paper_2021_03

▶ Central bank issues digital coins equivalent to issuing cash
⇒ monetary policy remains under CB control

▶ Architecture with consumer accounts at commercial banks
⇒ no competition for commercial banking (S&L)
⇒ CB does not have to manage KYC, customer support

▶ Withdrawal limits and denomination expiration
⇒ protects against bank runs and hoarding

▶ Income transparency and possibility to set fees
⇒ additional insights into economy and new policy options

▶ Revocation protocols and loss limitations
⇒ exit strategy and handles catastrophic security incidents

▶ Privacy by cryptographic design not organizational compliance
⇒ CB cannot be forced to facilitate mass-surveillance

https://www.snb.ch/en/mmr/papers/id/working_paper_2021_03

Usability of Taler

https://demo.taler.net/

1. Install browser extension.

2. Visit the bank.demo.taler.net to withdraw coins.

3. Visit the shop.demo.taler.net to spend coins.

https://demo.taler.net/

Social Impact of Taler

privacycomfort

Internet security

regional
markets

alternative
economies

accessibility anti-spam

anti-
corruption

improves
competition

economic
integration
(migrants)

financial education
/ self-responsibility

anti-DDoS

green /
efficient

economic
independence

anti-discrimination

libre

for the disadvantaged for a better Internet

for ordinary citizens

for a better market economyfor new economies

Use Case: Journalism

Today:

▶ Corporate structure

▶ Advertising primary revenue

▶ Tracking readers critical for business success

▶ Journalism and marketing hard to distinguish

With GNU Taler:

▶ One-click micropayments per article

▶ Hosting requires no expertise

▶ Reader-funded reporting separated from marketing

▶ Readers can remain anonymous

Use Case: Journalism

Today:

▶ Corporate structure

▶ Advertising primary revenue

▶ Tracking readers critical for business success

▶ Journalism and marketing hard to distinguish

With GNU Taler:

▶ One-click micropayments per article

▶ Hosting requires no expertise

▶ Reader-funded reporting separated from marketing

▶ Readers can remain anonymous

Example: The Taler Snack Machine2

Integration of a MDB/ICP to Taler gateway.
Implementation of a NFC or QR-Code to Taler wallet interface.

Backend

Rest API

USB NFCMDB/ICP

Wallet

2by M. Boss and D. Hofer

Software architecture for the Taler Snack Machine
Code at https://git.taler.net/taler-mdb

Raspberry Pi

gnu:net libnfc libqrencode

Application

Raspbian

MDB NFC TFT

TCP/IP

https://git.taler.net/taler-mdb

User story: Install App on Android
https://wallet.taler.net/

https://wallet.taler.net/

User story: Withdraw e-cash

User story: Use machine!

Real-world use

Component Zoo

The Taler Software Ecosystem: Overview
https://taler.net/en/docs.html

Taler is based on modular components that work together to provide
a complete payment system:

▶ Exchange: Service provider for digital cash
▶ Core exchange software (cryptography, database)
▶ Air-gapped key management, real-time auditing
▶ libeufin: Modular integration with banking systems
▶ challenger: KYC service with OAuth 2.0 API

▶ Merchant: Integration service for existing businesses
▶ Core merchant backend software (cryptography, database)
▶ Back-office interface for staff
▶ Frontend integration (E-commerce, Point-of-sale)

▶ Wallet: Consumer-controlled applications for e-cash
▶ Multi-platform wallet software (for browsers & mobile phones)
▶ Wallet backup storage providers (sync & Anastasis)

https://taler.net/en/docs.html

Taler Exchange

The Exchange is the core logic of the payment system.

▶ One exchange at minimum must be operated per currency

▶ Offers a REST API for merchants and customers

▶ Uses several helper processes for configuration and to interact
with RTGS and cryptography

▶ KYC support via OAuth 2.0, KycAID or Persona APIs

▶ Implemented in C on top of GNU libmicrohttpd

Taler: Exchange Architecture

httpd secmod-rsasecmod-eddsa

Postgres aggregator

transfer wirewatchNexus

Taler Merchant

The Merchant is the software run by merchants to accept
GNU Taler payments.
▶ REST API for integration with

e-commerce

▶ SPA provides Web interface for
administration

▶ Features include:
▶ Multi-tenant support
▶ Refunds
▶ Templates
▶ Webhooks
▶ Inventory management

(optional)

▶ Implemented in C on top of
GNU libmicrohttpd

Taler: Merchant Perspective

taler-merchant-httpd

E-commerce Frontend Backoffice

Postgres Sqlite
...

REST
API RE

ST
AP

I

SQ
L S

Q
L

SQL

Taler Wallet

The Wallet is the software run by consumers to store their digital
cash and authorize transactions.

▶ wallet-core is the logic shared by all
interfaces

▶ Works on Android, F-Droid, iOS, Ubuntu
Touch, WebExtension (Chrome, Chromium,
Firefox, etc.)

▶ Features include:
▶ Multi-currency support
▶ Wallet-to-wallet payments (NFC or QR

code)
▶ CRDT-like data model

▶ wallet-core implemented in TypeScript

Can be integrated into other Apps if desired.

Taler: Wallet Architecture
Background: https://anastasis.lu/

Android iOSWebExtension

wallet-core

Sync TalerAnastasis

Ba
ck
up

Payment

K
ey

E
scrow

https://anastasis.lu/

RFC 8905: payto: Uniform Identifiers for Payments and
Accounts

Like mailto:, but for bank accounts instead of email accounts!

payto://<PAYMENT-METHOD>/<ACCOUNT-NR>

?subject=InvoiceNr42

&amount=EUR:12.50

Default action: Open app to review and confirm payment.

Benefits of payto://

▶ Standardized way to represent financial resources (bank
account, bitcoin wallet) and payments to them

▶ Useful on the client-side on the Web and for FinTech backend
applications

▶ Payment methods (such as IBAN, ACH, Bitcoin) are
registered with IANA and allow extra options

Taler wallet can generate payto://-URI for withdraw!

Taler Auditor

The Auditor is the software run by an independent auditor to vali-
date the operation of an Exchange.

▶ REST API for additional report inputs by merchants (optional)

▶ Secure database replication logic

▶ Implemented in C on top of GNU libmicrohttpd

Taler: Auditor Perspective

Postgres (Auditor)

auditor-httpd auditor-spamerchant

a-h-* a-h-wire-*

Postgres (Exchange) Postgres (Bank)

sy
n
c nexus

libeufin-nexus

libeufin-nexus allows Taler components to interact with a core bank-
ing system. It:

▶ provides an implementation of the Wire Gateway for the
exchange

▶ supports EBICS 2.5 and 3.0

▶ other APIs such as FinTS or PSD2-style XS2A APIs can be
added without requiring changes to the Exchange

▶ was tested with GLS Bank (DE) and Postfinance (CH)
accounts and real EUR/CHF

libeufin-bank

libeufin-bank implements a standalone bank with a Web interface.
It:

▶ provides the Taler Core Bank API for RESTful online banking
using a Web interface (with multi-factor authentication)

▶ includes a Taler Wire Gateway for the exchange

▶ offers the Taler Bank Integration API to allow wallets to easily
withdraw digital cash

▶ optionally provides the Taler Conversion Info API for currency
conversion between fiat and regional currencies

▶ optionally integrates with libeufin-nexus to interact with a
core banking system

Taler: Bank Perspective

Exchange

Nexus

Core Banking

Nginx

Postgres

Postgres

R
E
S
T

A
P
I

SQ
L

SQL

Internal REST
API

EB
ICS

/F
inT

S

Challenger

Challenger allows clients to obtain validated address (KYC) data
about users:

▶ Customizable Web-based process for address validation

▶ Can validate phone numbers, e-mail addresses or physical
mailing addresses

▶ Provides an exchange-compatible OAuth 2.0 API

Depolymerization

Depolymerization is a bridge between GNU Taler and blockchains,
making Taler a layer 2 system for crypto-currencies (like Lightning).

▶ provides an implementation of the Wire Gateway for the
exchange

▶ Works on top of Bitcoin and Ethereum crypto-currencies, with
the DLTs as the “RTGS”

▶ Provides same API to Exchange as libeufin-nexus

▶ Implemented in Rust

https://bitcoin.ice.bfh.ch/

https://bitcoin.ice.bfh.ch/

Pretix Taler payment plugin

Pretix is a ticket sales system.

▶ Pretix payment plugin enables payments via GNU Taler

▶ Developed by Pretix.eu for e 3,000 on behalf of Taler Systems
SA

WooCommerce Taler payment plugin

▶ WooCommerce is an
e-commerce plugin for
WordPress.

▶ WooCommerce payment plugin
enables payments via GNU Taler

▶ Features include:
▶ Trivial configuration
▶ Support for refunds
▶ Full internationalization

▶ WooCommerce and its plugins
are implemented in PHP

Joomla! Taler payment plugin

▶ Joomla! is an e-commerce
platform

▶ Joomla! payment plugin enables
payments via GNU Taler

▶ Features include:
▶ Trivial configuration
▶ Support for refunds
▶ Full internationalization

▶ Joomla! and its plugins are
implemented in PHP

Point-of-Sale App for Android

▶ Allows merchant to generate orders
against Taler backend and display QR
code to enable customer to pay in
person

▶ Patterned after ViewTouch restaurant
UI

▶ Features include:
▶ Internet-based configuration
▶ Products sorted by categories
▶ Easy undo of every operation
▶ Manages multiple concurrent orders

▶ The Point-of-Sale App is implemented
in Kotlin

Cashier App for Android

▶ Enables BFH staff
to convert cash to
e-cash

▶ Staff has special
bank accounts with
limited funds

▶ Students can pay
staff in cash to
receive e-cash

▶ The Cashier App is
implemented in
Kotlin

Cashless2ecash by Joel Haeberli

TalDir (WiP)

TalDir is an extension to the existing peer-to-peer payment func-
tionality.

▶ Registry to associate wallets with network addresses
▶ Extensible to different types of network services:

▶ E-mail
▶ SMS
▶ Twitter
▶ ...

▶ Send payments or invoices to wallets associated with network
address

▶ Will not require sending wallet to use same network service

Protocol Basics

A Bachelor’s Thesis Video

How does it work?

We use a few ancient constructions:

▶ Cryptographic hash function (1989)

▶ Blind signature (1983)

▶ Schnorr signature (1989)

▶ Diffie-Hellman key exchange (1976)

▶ Cut-and-choose zero-knowledge proof (1985)

But of course we use modern instantiations.

Definition: Taxability

We say Taler is taxable because:

▶ Merchant’s income is visible from deposits.

▶ Hash of contract is part of deposit data.

▶ State can trace income and enforce taxation.

Limitations:

▶ withdraw loophole

▶ sharing coins among family and friends

Definition: Taxability

We say Taler is taxable because:

▶ Merchant’s income is visible from deposits.

▶ Hash of contract is part of deposit data.

▶ State can trace income and enforce taxation.

Limitations:

▶ withdraw loophole

▶ sharing coins among family and friends

Exchange setup: Create a denomination key (RSA)

1. Generate random primes p, q.

2. Compute n := pq,
ϕ(n) = (p − 1)(q − 1)

3. Pick small e < ϕ(n) such that
d := e−1 mod ϕ(n) exists.

4. Publish public key (e, n).

(p, q)

Merchant: Create a signing key (EdDSA)

▶ Generate random number m
mod o as private key

▶ Compute public key M := mG

m

M

Capability: m⇒ M

Customer: Create a planchet (EdDSA)

▶ Generate random number c mod o as
private key

▶ Compute public key C := cG

c

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Capability: c ⇒ X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Customer: Blind planchet (RSA)

1. Obtain public key (e, n)

2. Compute f := FDH(C), f < n.

3. Generate random blinding factor
b ∈ Zn

4. Transmit f ′ := fbe mod n

b

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

Exchange

tr
an
sm

it

Exchange: Blind sign (RSA)

1. Receive f ′.

2. Compute s ′ := f ′d mod n.

3. Send signature s ′.
b

b

Customer

tr
an
sm

it

Customer: Unblind coin (RSA)

1. Receive s ′.

2. Compute s := s ′b−1 mod n

b
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

b

Withdrawing coins on the Web
Taler (W it hdraw coins)

Custom er Browser

Custom er Browser

Bank Site

Bank Site

Taler Exchange

Taler Exchange

HTTPS

HTTPS

wire t ransfer

1 user authent icat ion

2 send account portal

3 init iate withdrawal (specify am ount and exchange)

4 request coin denom inat ion keys and wire t ransfer data

5 send coin denom inat ion keys and wire t ransfer data

6 execute withdrawal

opt

7 request t ransact ion authorizat ion

8 t ransact ion authorizat ion

9 withdrawal confirm at ion

1 0 execute wire t ransfer

1 1 withdraw request

1 2 signed blinded coins

1 3 unblind coins

Customer: Build shopping cart

www
tr
an
sm

it

Merchant Integration: Contract

{

"H_wire":"YTH0C4QBCQ10VDNTJN0DCTTV2Z6JHT5NF43F0RQHZ8JYB5NG4W4G ...",

"amount":{"currency":"EUR","fraction":0,"value":1},

"max_fee":{"currency":"EUR","fraction":100000 ,"value":0},

"auditors":[{"auditor_pub":"42 V6TH91Q83FB846DK1GW3JQ5E8DS273W4 ..."}],

"exchanges":[{"master_pub":"1T5FA8VQHMMKBHDMYPRZA2ZFK2S63AKF0Y ...",

"url":"https :// exchange/"}],

"fulfillment_url": "https :// shop/article /42? tid =249& time =14714744",

"merchant":{"address":"Mailbox␣4242","jurisdiction":"Jersey",

"name":"Shop␣Inc."},

"merchant_pub":"Y1ZAR5346J3ZTEXJCHQY9NJN78EZ2HSKZK8M0MYTNRJG5N ...",

"products":[{

"description":"Essay:␣The␣GNU␣Project",

"price":{"currency":"EUR","fraction":0,"value":1},

"product_id":42,"quantity":1}],

"pay_deadline":"/Date (1480119270)/",

"refund_deadline":"/Date (1471522470)/",

"timestamp":"/Date (1471479270)/",

"transaction_id":249960194066269

}

Merchant Integration: Payment Request

HTTP /1.1 402 Payment Required

Content-Type: text/html; charset=UTF-8

Taler: taler :// pay/merchant.example.com/JYABKFIEWB

<!DOCTYPE html>

<html>

<!-- Fallback page with QR code for browsers without

Taler support / browser extension. -->

</html>

Merchant: Propose contract (EdDSA)

1. Complete proposal D.

2. Send D, EdDSAm(D)

M

Customer

m

tr
an
sm

it

Customer: Spend coin (EdDSA)

1. Receive proposal D,
EdDSAm(D).

2. Send s, C , EdDSAc(D)

M

M X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

c

Merchant

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

tr
an
sm

it

tr
an
sm

it

Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C) mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔

The exchange does not only verify the signature, but also checks
that the coin was not double-spent.

Taler is an online payment system.

Merchant and Exchange: Verify coin (RSA)

se
?≡ FDH(C) mod n

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

?⇔

The exchange does not only verify the signature, but also checks
that the coin was not double-spent.

Taler is an online payment system.

Payment processing with Taler
Taler (Paym ent)

Payer (Shopper) Browser

Payer (Shopper) Browser

Payee (Merchant) Site

Payee (Merchant) Site

Taler Exchange

Taler Exchange

Tor/HTTPS

HTTP/HTTPS

Request Offer

1 Choose goods by navigat ing to offer URL

2 Send signed digital cont ract proposal

opt

3 Select Taler paym ent m ethod (skippable with auto-detect ion)

Execut e Paym ent

opt

4 Affirm cont ract

5 Navigate to fulfillm ent URL

6 Send hash of digital cont ract and paym ent inform at ion

7 Send paym ent

8 Forward paym ent

9 Confirm paym ent

1 0 Confirm paym ent

Fulf ilm ent

1 1 Reload fulfillm ent URL for delivery

1 2 Provide product resource

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Giving change

It would be inefficient to pay EUR 100 with 1 cent coins!

▶ Denomination key represents value of a coin.

▶ Exchange may offer various denominations for coins.

▶ Wallet may not have exact change!

▶ Usability requires ability to pay given sufficient total funds.

Key goals:

▶ maintain unlinkability

▶ maintain taxability of transactions

Method:

▶ Contract can specify to only pay partial value of a coin.

▶ Exchange allows wallet to obtain unlinkable change for
remaining coin value.

Diffie-Hellman (ECDH)

1. Create private keys c , t mod o

2. Compute C := cG

3. Compute T := tG

4. Compute DH
cT = c(tG) = t(cG) = tC

t

C T

c

Strawman solution

Given partially spent private coin key cold :

1. Generate random cnew mod o as private key

2. Compute public key Cnew = cnewG

3. Generate random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an
sm

it

Problem: Owner of cnew may differ from owner of cold !

Strawman solution

Given partially spent private coin key cold :

1. Generate random cnew mod o as private key

2. Compute public key Cnew = cnewG

3. Generate random bnew

4. Compute fnew := FDH(Cnew), m < n.

5. Transmit f ′new := fnewb
e
new mod n

... and sign request for change with cold .

b

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

cnew

bnew

Exchange

tr
an
sm

it

Problem: Owner of cnew may differ from owner of cold !

Customer: Transfer key setup (ECDH)

Given partially spent private coin key cold :

1. Let Cold := coldG (as before)

2. Generate random private transfer key t
mod o

3. Compute T := tG

4. Compute X := cold(tG) = t(coldG) = tCold

5. Derive cnew and bnew from X

6. Compute Cnew := cnewG

7. Compute fnew := FDH(Cnew)

8. Transmit f ′new := fnewb
e
new

t

C T

cold

cnew bnew

b

Exchange

tr
an
sm

it

Cut-and-Choose

t1

C T

cold

cnew ,1 bnew ,1

b

Exchange

tr
an
sm

it
t2

C T

cold

cnew ,2 bnew ,2

b

Exchange

tr
an
sm

it

t3

C T

cold

cnew ,3 bnew ,3

b

Exchange

tr
an
sm

it

Exchange: Choose!

Exchange sends back random γ ∈ {1, 2, 3} to the customer.

Customer: Reveal

1. If γ = 1, send t2, t3 to exchange

2. If γ = 2, send t1, t3 to exchange

3. If γ = 3, send t1, t2 to exchange

Exchange: Verify (γ = 2)

t1

C T

Cold

cnew ,1 bnew ,1

b

t3

C T

Cold

cnew ,3 bnew ,3

b

Exchange: Blind sign change (RSA)

1. Take f ′new ,γ .

2. Compute s ′ := f ′dnew ,γ mod n.

3. Send signature s ′.
b

b

Customer

tr
an
sm

it

Customer: Unblind change (RSA)

1. Receive s ′.

2. Compute s := s ′b−1new ,γ mod n.

bnew ,γ
X

N
A

G
YE6P65735P4H1NGN8D

T5
28

W
S3

PX

ZT8T0YDYPS8770GCD
Z5

b

Exchange: Allow linking change

Given Cold

return Tγ , s := s ′b−1new ,γ mod n.

Cold

Tγ
b

Customer

link

lin
k

Customer: Link (threat!)

1. Have cold .

2. Obtain Tγ , s from exchange

3. Compute Xγ = coldTγ

4. Derive cnew ,γ and bnew ,γ from Xγ

5. Unblind s := s ′b−1new ,γ mod n

Tγ

Exchange

b

C T

bnew ,γ

cold

cnew ,γ

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

X
N

A
G

YE6P65735P4H1NGN8D
T5

28
W

S3
PX

ZT8T0YDYPS8770GCD
Z5

link

lin
k

Refresh protocol summary

▶ Customer asks exchange to convert old coin to new coin

▶ Protocol ensures new coins can be recovered from old coin

⇒ New coins are owned by the same entity!

Thus, the refresh protocol allows:

▶ To give unlinkable change.

▶ To give refunds to an anonymous customer.

▶ To expire old keys and migrate coins to new ones.

▶ To handle protocol aborts.

Transactions via refresh are equivalent to sharing a wallet.

Attacks & Defenses

Key management

Taler has many types of keys:

▶ Coin keys

▶ Denomination keys

▶ Online message signing keys

▶ Offline key signing keys

▶ Merchant keys

▶ Auditor key

▶ Security module keys

▶ Transfer keys

▶ Wallet keys

▶ TLS keys, DNSSEC keys

Offline keys

Both exchange and auditor use offline keys.

▶ Those keys must be backed up and remain highly confidential!

▶ We recommend that computers that have ever had access to
those keys to NEVER again go online.

▶ We recommend using a Raspberry Pi for offline key
operations. Store it in a safe under multiple locks and keys.

▶ Apply full-disk encryption on offline-key signing systems.

▶ Have 3–5 full-disk backups of offline-key signing systems.

Online keys
The exchange needs RSA and EdDSA keys to be available for online
signing.

▶ Knowledge of these private keys will allow an adversary to
mint digital cash, possibly resulting in huge financial losses
(eventually, this will be detected by the auditor, but only after
some financial losses have been irrevocably incurred).

▶ The corresponding public keys are certified using Taler’s
public key infrastructure (which uses offline-only keys).

taler-exchange-offline can also be used to revoke the online
signing keys, if we find they have been compromised.

Protecting online keys

The exchange needs RSA and EdDSA keys to be available for online
signing.

▶ taler-exchange-secmod-rsa and
taler-exchange-secmod-eddsa are the only processes that
must have access to the private keys.

▶ The secmod processes should run under a different UID, but
share the same GID with the exchange.

▶ The secmods generate the keys, allow
taler-exchange-httpd to sign with them, and eventually
delete the private keys.

▶ Communication between secmods and
taler-exchange-httpd is via a UNIX domain socket.

▶ Online private keys are stored on disk (not in database!) and
should NOT be backed up (RAID should suffice). If disk is
lost, we can always create fresh replacement keys!

Online keys

▶ The exchange needs d and w to be available for online
signing.

▶ The corresponding public keys W and (e, n) are certified using
Taler’s public key infrastructure (which uses offline-only keys).

What happens if those private keys are compromised?

Denomination key (e, n) compromise

▶ An attacker who learns d can sign an arbitrary number of
illicit coins into existence and deposit them.

▶ Auditor and exchange can detect this once the total number
of deposits (illicit and legitimate) exceeds the number of
legitimate coins the exchange created.

▶ At this point, (e, n) is revoked. Users of unspent legitimate
coins reveal b from their withdrawal operation and obtain a
refund.

▶ The financial loss of the exchange is bounded by the number
of legitimate coins signed with d .

⇒ Taler frequently rotates denomination signing keys and deletes
d after the signing period of the respective key expires.

Online signing key W compromise

▶ An attacker who learns w can sign deposit confirmations.

▶ Attacker sets up two (or more) merchants and customer(s)
which double-spend legitimate coins at both merchants.

▶ The merchants only deposit each coin once at the exchange
and get paid once.

▶ The attacker then uses w to fake deposit confirmations for
the double-spent transactions.

▶ The attacker uses the faked deposit confirmations to complain
to the auditor that the exchange did not honor the (faked)
deposit confirmations.

The auditor can then detect the double-spending, but cannot tell
who is to blame, and (likely) would presume an evil exchange, forcing
it to pay both merchants.

Detecting online signing key W compromise

▶ Merchants are required to probabilistically report signed
deposit confirmations to the auditor.

▶ Auditor can thus detect exchanges not reporting signed
deposit confirmations.

⇒ Exchange can rekey if illicit key use is detected, then only has
to honor deposit confirmations it already provided to the
auditor and those without proof of double-spending and those
merchants reported to the auditor.

⇒ Merchants that do not participate in reporting to the auditor
risk their deposit permissions being voided in cases of an
exchange’s private key being compromised.

Warranting deposit safety

Exchange has another online signing key W = wG :

Sends EdDSAw (M,H(D),FDH(C)) to the merchant.

This signature means that M was the first to deposit C and that
the exchange thus must pay M.

Without this, an evil exchange could renege on the deposit
confirmation and claim double-spending if a coin were deposited

twice, and then not pay either merchant!

Database

The exchange needs the database to detect double spending.

▶ Loss of the database will allow technically skilled people to
double-spend their digital cash, possibly resulting in significant
financial losses.

▶ The database contains total amounts customers withdrew and
merchants received, so sensitive private banking data. It must
thus not become public.

▶ The auditor must have a (current) copy. Asynchronous
replication should be sufficient. This copy can also serve as an
additional (off-site?) backup.

taler-exchange-wirewatch
taler-exchange-wirewatch

needs credentials to access data about incoming wire transfers from
the Nexus.

▶ This tool should run as a separate UID and GID (from
taler-exchange-httpd).

▶ It must have access to the Postgres database (SELECT +
INSERT).

▶ Its configuration file contains the credentials to talk to Nexus.

⇒ Configuration should be separate from
taler-exchange-httpd.

taler-exchange-transfer

Only taler-exchange-transfer needs credentials to initiate wire
transfers using the Nexus.

▶ This tool should run as a separate UID and GID (from
taler-exchange-httpd).

▶ It must have access to the Postgres database (SELECT +
INSERT).

▶ Its configuration file contains the credentials to talk to Nexus.

⇒ Configuration should be separate from
taler-exchange-httpd.

libeufin-nexus

libeufin-nexus has to be able to interact with the escrow account of
the exchange.

▶ It must have the private keys to sign EBICS/FinTS messages.

▶ It also has its own local database.

▶ The Nexus user and database should be kept separate from
the other exchange users and the Taler exchange database.

Hardware

General notions:

▶ Platforms with disabled Intel ME & disabled remote
administration are safer.

▶ VMs are not a security mechanism. Side-channel attacks
abound. Avoid running any Taler component in a virtual
machine “for security”.

Operating system

General notions:

▶ It should be safe to run the different Taler components
(including Nginx, Nexus and Postgres) all on the same
physical hardware (under different UIDs/GIDs). We would
separate them onto different physical machines during
scale-out, but not necessarily for “basic” security.

▶ Limiting and auditing system administrator access will be
crucial.

▶ We recommend to not use any anti-virus.

▶ We recommend using a well-supported GNU/Linux operating
system (such as Debian or Ubuntu).

Network

▶ We recommend to not use any host-based firewall. Taler
components can use UNIX domain sockets (or bind to
localhost).

▶ A network-based firewall is not required, but as long as TCP
80/443 are open Taler should work fine.

▶ Any firewall must be configured to permit connection to
Auditor for database synchronization.

▶ We recommend running the Taler exchange behind an Nginx
or Apache proxy for TLS termination.

▶ We recommend using static IP address configurations (IPv4
and IPv6).

▶ We recommend using DNSSEC with DANE in addition to
TLS certificates.

▶ We recommend auditing the TLS setup using
https://observatory.mozilla.org.

https://observatory.mozilla.org

Offline payments

Requirements: Online vs. Offline Digital Currencies
https://taler.net/papers/euro-bearer-online-2021.pdf

▶ Offline capabilities are sometimes cited as a requirement for
digital payment solutions

▶ All implementations must either use restrictive hardware
elements and/or introduce counterparty risk.

⇒ Permanent offline features weaken a digital payment solution
(privacy, security)

⇒ Introduces unwarranted competition for physical cash
(endangers emergency-preparedness).

We recommend a tiered approach:

1. Online-first, bearer-based digital currency with Taler

2. (Optional:) Limited offline mode for network outages

3. Physical cash for emergencies (power outage, catastrophic
cyber incidents)

https://taler.net/papers/euro-bearer-online-2021.pdf

Fully Offline Payments (WiP)
https://docs.taler.net/design-documents/030-offline-payments.html

Many central banks today demand offline capabilities for digital pay-
ment solutions.

Three possible approaches:

1. Trust-based offline payments (has counterparty and/or privacy
risks)

2. Full HSM Taler wallet (has hardware costs)

3. Light-weight HSM balance register

https://docs.taler.net/design-documents/030-offline-payments.html

A Scenario
God is offline, but customer pays online

Typical Payment Process
All equivalent: Twint, PayPal, AliPay, PayTM

(C) Twint, 2023

Secure Payment ...
Everything green?

Exploit “Code”
Programming optional

“Customers” love Twint ...
Daily non-business for shops

Partially Offline Payments with GNU Taler3

PoS

PoS key
PoS ID

Customer

Digital
Wallet

Merchant Backend

PoS key

PoS ID

PoS ID

Amount

optionaloptional

Amount

optionaloptional

PoS ID, [Amount]?

Contract

Payment

OTP(PoS key) OTP(PoS key)

OTP code

OTP code

3Joint work with Emmanuel Benoist, Priscilla Huang and Sebastian
Marchano

Programmable money: Age restrictions

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy

Ext. authority

1. ID Verification bad

required

2. Restricted Accounts bad

required

3. Attribute-based good

required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Age restriction design for GNU Taler

Design and implementation of an age restriction scheme
with the following goals:

1. It ties age restriction to the ability to pay (not to ID’s)

2. maintains anonymity of buyers

3. maintains unlinkability of transactions

4. aligns with principle of subsidiartiy

5. is practical and efficient

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Age restriction
Assumptions and scenario

▶ Assumption: Checking accounts are
under control of eligible adults/guardians.

▶ Guardians commit to an maximum age

▶ Minors attest their adequate age

▶ Merchants verify the attestations

▶ Minors derive age commitments from
existing ones

▶ Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

Formal Function Signatures

Searching for functions

with the following signatures

Commit

: (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs,

P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

Age restriction
Näıve scheme

E

C M

G

Commit

Attest

Verify

Derive

Compare

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i
,
Q
i+

1
)

Simple use of Derive() and Compare() is problematic.

▶ Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

▶ Exchange calls Compare(Qi ,Qi+1, .)

=⇒ Exchange identifies sequence

=⇒ Unlinkability broken

Achieving Unlinkability

Define cut&choose protocol DeriveCompareκ, using Derive() and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi , βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))
and evaluates Compare(Q0,Qi , βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.

Achieving Unlinkability

Define cut&choose protocol DeriveCompareκ, using Derive() and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi , βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))
and evaluates Compare(Q0,Qi , βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.

Achieving Unlinkability

With DeriveCompareκ
▶ E learns nothing about Qγ ,

▶ trusts outcome with κ−1
κ certainty,

▶ i.e. C has 1
κ chance to cheat.

Note: Still need Derive and Compare to be defined.

Refined scheme

C

E

M

G

D
er
iv
eC
om

pa
re
κ

(Tm,Q)

Commit(a)

(Q
, P

a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

Achieving Unlinkability

DeriveCompareκ : O× P× Ω→ {0, 1}

DeriveCompareκ(Q,P, ω) =

C: 1. for all i ∈ {1, . . . , κ} : (Qi ,Pi , βi)← Derive(Q,P, ω + i)

2. h← H
(
H(Q1, β1) ∥ · · · ∥ H(Qκ, βκ)

)
3. send (Q, h) to E

E: 5. save (Q, h)

6. γ
$←− {1, . . . , κ}

7. send γ to C

C: 8. h′γ ← H(Qγ , βγ)

9. Eγ ←
[
(Q1, β1), . . . , (Qγ−1, βγ−1),⊥, (Qγ+1, βγ+1), . . . , (Qκ, βκ)

]
10. send (Eγ , h′γ) to E

E: 11. for all i ∈ {1, . . . , κ} \ {γ} : hi ← H(Eγ [i])

12. if h
?
̸= H(h1∥ . . . ∥hγ−1∥h′γ∥hγ+1∥ . . . ∥hκ−1) return 0

13. for all i ∈ {1, . . . , κ} \ {γ}: if 0
?
= Compare(Q,Qi , βi) return 0

14. return 1

Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must first meet basic requirements:

▶ Existence of attestations

▶ Efficacy of attestations

▶ Derivability of commitments and attestations

Basic Requirements
Formal Details

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =

{
T ∈ T, if m ≤ a

⊥ otherwise

Efficacy of attestations

Verify(m,Q,T) =

1, if ∃
P∈P

: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

etc.

Requirements
Details

Derivability of commitments and proofs:
Let

a ∈ NM, ω0, ω1 ∈ Ω

(Q0,P0)← Commit(a, ω0),

(Q1,P1, β)← Derive(Q0,P0, ω1).

We require

Compare(Q0,Q1, β) = 1

and for all n ≤ a:

Verify(n,Q1,Attest(n,Q1,P1)) = Verify(n,Q0,Attest(n,Q0,P0))

Security Requirements

Candidate functions must also meet security requirements. Those
are defined via security games:

▶ Game: Age disclosure by commitment or attestation

↔ Requirement: Non-disclosure of age

▶ Game: Forging attestation

↔ Requirement: Unforgeability of minimum age

▶ Game: Distinguishing derived commitments and attestations

↔ Requirement: Unlinkability of commitments and attestations

Meeting the security requirements means that adversaries can win
those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all
relevant input.

Security Requirements
Simplified Example

Game GFA
A (λ)—Forging an attest:

1. (a, ω)
$←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFA
A (λ) = 1

]
≤ ϵ(λ)

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}

1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age (group):

⟨(q1, p1), . . . , (qM, pM)⟩

2. Guardian then drops all private keys pi for i > a:〈
(q1, p1), . . . , (qa, pa), (qa+1,⊥), . . . , (qM,⊥)

〉
▶ Q⃗ := (q1, . . . , qM) is the Commitment,
▶ P⃗a := (p1, . . . , pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child ⟨Q⃗, P⃗a⟩

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Attest and Verify

Child has

▶ ordered public-keys Q⃗ = (q1, . . . , qM),

▶ (some) private-keys P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Attest a minimum age m ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

▶ ordered public-keys Q⃗ = (q1, . . . , qM)

▶ Signature σ

To Verify a minimum age m:
Verify the ECDSA-Signature σ with public key qm.

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).
To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA
Definitions of Derive and Compare

Child has Q⃗ = (q1, . . . , qM) and P⃗ = (p1, . . . , pa,⊥, . . . ,⊥).
To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . , qM), Q⃗′ = (q′1, . . . , q
′
M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . , q

′
M)

Instantiation with ECDSA

Functions (Commit, Attest, Verify, Derive, Compare)
as defined in the instantiation with ECDSA

▶ meet the basic requirements,

▶ also meet all security requirements.
Proofs by security reduction, details are in the paper.

Instantiation with ECDSA
Full definitions

CommitE ,[·]g (a, ω) :=
〈 =Q⃗︷ ︸︸ ︷
(q1, . . . , qM),

=P⃗, length M︷ ︸︸ ︷
(p1, . . . , pa,⊥, . . . ,⊥)

〉
AttestE ,H(b, Q⃗, P⃗) :=

Tb := SigE ,H

(
b, P⃗[b]

)
if P⃗[b]

?
̸=⊥

⊥ otherwise

VerifyE ,H(b, Q⃗,T) := VerE ,H(b, Q⃗[b],T)

DeriveE ,[·]g (Q⃗, P⃗, ω) :=
〈
(β ∗ q1, . . . , β ∗ qM), (βp1, . . . , βpa,⊥, . . . ,⊥), β

〉
with β := [ω]g and multiplication βpi modulo g

CompareE (Q⃗, Q⃗′, β) :=

{
1 if (β ∗ q1, . . . , β ∗ qM)

?
= (q′1, . . . , q

′
M)

0 otherwise

Reminder: GNU Taler Fundamentals

E

C M
w
ith
dr
aw

re
fr
es
h

purchase

deposit

▶ Coins are public-/private key-pairs (Cp, cs).

▶ Exchange blindly signs FDH(Cp) with denomination key dp
▶ Verification:

1
?
= SigCheck

(
FDH(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

Integration with GNU Taler
Binding age restriction to coins

To bind an age commitment Q to a coin Cp, instead of signing
FDH(Cp), E now blindly signs

FDH(Cp,H(Q))

Verfication of a coin now requires H(Q), too:

1
?
= SigCheck

(
FDH(Cp,H(Q)),Dp, σp

)

Integration with GNU Taler
Integrated schemes

C

E

M

G

wit
hdr

aw,
usin

g

FD
H(C

p,
H(Q)

)

re
fr
es
h
+

D
er
iv
eC
om

pa
re
κ
purchase + (Tm,Q)

deposit
+

H
(Q

)

Commit(a)

(Q
, P

a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

Instantiation with Edx25519

Paper also formally defines another signature scheme: Edx25519.

▶ Scheme already in use in GNUnet,

▶ based on EdDSA (Bernstein et al.),

▶ generates compatible signatures and

▶ allows for key derivation from both, private and public keys,
independently.

Current implementation of age restriction in GNU Taler uses Edx25519.

Age Restrictions based on KYC

Subsidiarity requires bank accounts being owned by adults.
▶ Scheme can be adapted to case where minors have bank

accounts
▶ Assumption: banks provide minimum age information during

bank transactions.
▶ Child and Exchange execute a variant of the cut&choose

protocol.

Discussion

▶ Our solution can in principle be used with any token-based
payment scheme

▶ GNU Taler best aligned with our design goals (security,
privacy and efficiency)

▶ Subsidiarity requires bank accounts being owned by adults
▶ Scheme can be adapted to case where minors have bank

accounts
▶ Assumption: banks provide minimum age information during

bank transactions.
▶ Child and Exchange execute a variant of the cut&choose

protocol.

▶ Our scheme offers an alternative to identity management
systems (IMS)

Related Work

▶ Current privacy-perserving systems all based on
attribute-based credentials (Koning et al., Schanzenbach et
al., Camenisch et al., Au et al.)

▶ Attribute-based approach lacks support:
▶ Complex for consumers and retailers
▶ Requires trusted third authority

▶ Other approaches tie age-restriction to ability to pay (”debit
cards for kids”)
▶ Advantage: mandatory to payment process
▶ Not privacy friendly

Conclusion

Age restriction is a technical, ethical and legal challenge.
Existing solutions are

▶ without strong protection of privacy or

▶ based on identity management systems (IMS)

Our scheme offers a solution that is

▶ based on subsidiarity

▶ privacy preserving

▶ efficient

▶ an alternative to IMS

Software development & deployment

Development Infrastructure

▶ Borg: incremental backup

▶ Buildbot: CI/CD (https://buildbot.taler.net/)

▶ Davical: Caldav group calendar

▶ Docker: virtualization, packaging

▶ Git/Gitolite: distributed version control
(https://git.taler.net/)

▶ Mailman: public e-mail lists (taler@gnu.org/)

▶ Mantis: bug tracker (https://bugs.taler.net/)

▶ Mattermost: messaging, process management
(https://mattermost.taler.net/)

▶ Sphinx: documentation generation (HTML, PDF, info, man)
(https://docs.taler.net/)

▶ Weblate: collaborative AI-supported internationalization
(https://weblate.taler.net/)

h
h
t
h
h
h
h

Development Tools

▶ Coverity: static analysis (C/C++)
(https://scan.coverity.com/)

▶ GNU recutils: constant registration
(https://gana.gnunet.org/)

▶ Twister: fault injection

▶ Valgrind: dynamic analysis (C/C++)

▶ zzuf: fuzzing

h
h

Cryptographic dependencies

▶ libargon2

▶ libgcrypt

▶ libsodium

Additional dependencies

▶ libsqlite3

▶ libpq / Postgres

▶ libjansson

▶ libcurl

▶ libunistring

▶ GNU libmicrohttpd

▶ GNUnet

High-level Deployment Recipe

. . . as a bank

1. Create an escrow bank account for the exchange with EBICS
access

2. Provision offline signing machine

3. Provision two PostgreSQL databases (for libeufin-nexus and
exchange)

4. Provision user-facing exchange service and secmod processes

5. Provision libeufin-nexus (connected to escrow account and
providing an internal API to the exchange)

6. Test using the “taler-wallet-cli“

Exchange escrow account access

The Taler exchange needs to communicate with a core banking sys-
tem . . .

▶ to query for transactions into the exchange’s escrow account

▶ to initiate payments of aggregated Taler deposits to merchants

In a Taler deployment, the Taler Wire Gateway provides an API
to the exchange for Taler-specific access to the Exchange’s escrow
account. Multiple implementations of the Taler Wire Gateway exist:

▶ libeufin-bank, a self-contained play money demo bank

▶ libeufin-nexus, an adapter to EBICS and other protocols

▶ Depolymerizer, an adapter to blockchains

libeufin-nexus setup overview
https://docs.taler.net/libeufin/

▶ Obtain EBICS subscriber configuration (host URL, host ID,
user ID, partner ID) for the bank account

▶ Create and back up the key material for the bank connection
(contains EBICS subscriber configuration and private keys)

▶ Export key letter and activate subscriber in the EBICS host
(physical mail)

▶ Confirm connection is active

▶ Set up scheduled tasks for ingesting new transactions /
sending payment initiations

https://docs.taler.net/libeufin/

libeufin-nexus limitations at GLS Bank

The GLS accounts with EBICS access that we have access to have
some limitations:

▶ SEPA instant credit transfers are not supported yet (by the
bank)

▶ Erroneous payment initiations are accepted by the GLS EBICS
host, but an error message is later sent only by paper mail
(and not reported by the CRZ download request)

▶ Limited access to transaction history (3 months)

Performance4

4Joint work with Marco Boss

Performance
Other Payment Systems

Bitcoin

? TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
Other Payment Systems

Bitcoin

4 TPS

PayPal

193 TPS

Visa

1’667 TPS

[06.22] - Researchgate

https://www.researchgate.net/publication/330585021_Analysis_of_the_Possibilities_for_Improvement_of_BlockChain_Technology

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Performance
CBDC Projects

e-Krona (Sweden)

100 TPS

e-CNY (China)

10’000 TPS

Project Hamilton
(MIT)

1’700’000 TPS

[06.22] - Bostonfed - Atlatic Council - Riksbank

https://www.bostonfed.org/-/media/Documents/Project-Hamilton/Project-Hamilton-Phase-1-Whitepaper.pdf
https://www.atlanticcouncil.org/blogs/econographics/a-report-card-on-chinas-central-bank-digital-currency-the-e-cny/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2022/e-krona-pilot-phase-2.pdf

Grid’5000

▶ Large-scale flexible testbed

▶ 800 nodes with total
15’000 cores

▶ Bare metal deployments

▶ Fully customizable software
stack

Grid’5000

▶ Large-scale flexible testbed

▶ 800 nodes with total
15’000 cores

▶ Bare metal deployments

▶ Fully customizable software
stack

Grid’5000

▶ Large-scale flexible testbed

▶ 800 nodes with total
15’000 cores

▶ Bare metal deployments

▶ Fully customizable software
stack

Grid’5000

▶ Large-scale flexible testbed

▶ 800 nodes with total
15’000 cores

▶ Bare metal deployments

▶ Fully customizable software
stack

Platform Access
jFed - Java Based GUI and CLI

Architecture

Zone: perf.taler.

Loki

Promtail

Monitoring Node DNS Node

Syslog

Prometheus
 Exporters

External Node

Allocate an Experiment

Build Image (Kameleon)

1.

Allocate an Experiment

Copy Image to Grid'5000

2.

Build Image (Kameleon)

1.

Allocate an Experiment

Allocate Experiment (jFed)

3.

Copy Image to Grid'5000

2.

Build Image (Kameleon)

1.

Allocate an Experiment

Allocate Experiment (jFed)

3.

Copy Image to Grid'5000

2.

Build Image (Kameleon)

1.

Horizontal Distribution

Dashboard

Blockchain integration: Project Depolymerization

Blockchain based cryptocurrencies

Biggest cryptocurrencies

▶ BTC Bitcoin

▶ ETH Ethereum

Common blockchain limitations
▶ Delay block and confirmation delay

▶ Cost transaction fees

▶ Scalability limited amount of transaction per second

▶ Ecological impact computation redundancy

▶ Privacy

▶ Regulatory risk

Taler
Architecture

Exchange

Customer Merchant

W
it
hd
ra
w
co
in
s

Spend coins

D
eposit

coins

Deposit money Withdraw money

Auditor

Verify

Settlement Layer

Taler payment system

Settlement layer

▶ For Depolymerization:
Blockchain!

Taler payment system

▶ Realtime transactions, 1 RTT

▶ Scalable microtransactions

▶ Blind signatures (privacy)

Taler
Blockchain settlement layer

Taler

Exchange

Depolymerization

Node

Blockchain

Off-chain transactions

Credit Debit

Challenges

Taler Metadata
▶ Metadata are required to link a wallet to credits and allow

merchant to link deposits to debits

▶ Putting metadata in blockchain transactions can be tricky

Blockchain based cryptocurrencies

▶ Blockchain transactions lack finality (fork)

▶ Transactions can be stuck for a long time (mempool)

Blockchain challenges
Chain reorganization

D0 D1

D2 fork

active

A fork is when concurrent blockchain states coexist. Nodes will
follow the longest chain, replacing recent blocks if necessary during
a blockchain reorganization. If a deposit transaction disappears from
the blockchain, an irrevocable withdraw transactions would no longer
be backed by credit.

Blockchain challenges
Stuck transactions

We want confirmed debits within a limited time frame.

Tx conf

When we trigger a debit with a fee too small, it may not be confirmed
in a timely fashion.

Blockchain challenges
Stuck transactions

We want confirmed debits within a limited time frame.

Figure: Bitcoin average transaction fee over 6 months (ychart)

However, transaction fees are unpredictable.

Depolymerization
Architecture

Taler Exchange

Wire Gateway PostgreSQL DLT Adapter

DLT Full Node

HTTP

SQL SQL

RPC

Wire Gateway API DLT specific

▶ Common database to store transactions state and
communicate with notifications

▶ Wire Gateway for Taler API compatibility

▶ DLT specific adapter

Storing metadata
Bitcoin

Bitcoin - Credit
▶ Transactions from code

▶ Only 32B + URI

▶ OP RETURN

Bitcoin - Debit
▶ Transactions from common wallet software

▶ Only 32B

▶ Fake Segwit Addresses

Storing metadata
Ethereum

Smart contract ?
▶ Logs in smart contract is the recommend way (ethereum.org)

▶ Expensive (additional storage and execution fees)

▶ Avoidable attack surface (error prone)

Custom input format

Use input data in transactions, usually used to call smart contract,
to store our metadata.

Handling blockchain reorganization

D0 D1

D2 fork

active

As small reorganizations are common, Satoshi already recommended
to apply a confirmation delay to handle most disturbances and at-
tacks.

Handling blockchain reorganization

D0 D1

D2 fork

active

If a reorganization longer than the confirmation delay happens, but
it did not remove credits, Depolymerizer is safe and automatically
resumes.

Handling blockchain reorganization

D0 D3 D1

D ′3 D2 fork

active

If a fork removed a confirmed debit, an attacker may create a con-
flicting transaction. Depolymerizer suspends operation until lost
credits reappear.

Adaptive confirmation

fork

active

Max New Initial

If we experience a reorganization once, its dangerously likely for
another one of a similar scope to happen again. Depolymerizer
learns from reorganizations by increasing its confirmation delay.

DLT Adapter
Architecture

Event system

▶ Watcher watch and notify for new blocks with credits

▶ Wire Gateway notify requested debits

▶ Worker operates on notifications updating state

DLT Adapter state machine

Wait for notifications

Reconcile local DB with DLT

Trigger debits

Reissue stuck debits

Bounce malformed credits

Figure: Worker loop

DLT reconcialisation
▶ List new and removed

transactions since last
reconciliation

▶ Check for confirmed credits
removal

▶ Register new credits

▶ Recover lost debits

Related work

Centralization - Coinbase off-chain sending

+ Fast and cheap: off chain transaction

− Trust in Coinbase: privacy, security & transparency

Layering - Lightning Network

+ Fast and cheap: off-chain transactions

− Requires setting up bidirectional payment channels

− Fraud attempts are mitigated via a complex penalty system

Conclusion

Blockchains can be used as a settlement layer for GNU Taler with
Depolymerizer.

− Trust exchange operator or auditors

+ Fast and cheap

+ Realtime, ms latency

+ Linear scalability

+ Ecological

+ Privacy when it can, transparency when it must (avoid tax
evasion and money laundering)

Future work:

▶ Universal auditability, using sharded transactions history

▶ Smarter analysis, update confirmation delay based on currency
network behavior

▶ Multisig by multiple operator for transactions validation

Future Work & Conclusion

Taler: Project Status
https://docs.taler.net/

▶ Cryptographic protocols and core exchange component are
stable

▶ Pilot project at Bern University of Applied Sciences cafeteria

▶ Regional currency projects in Switzerland preparing for launch

▶ Internal alpha deployment with GLS Bank (Germany)

https://docs.taler.net/

Competitor comparison

Cash Bitcoin Zerocoin Creditcard GNU Taler

Online −−− ++ ++ + +++
Offline +++ −− −− + ++
Trans. cost + −−− −−− − ++
Speed + −−− −−− o ++
Taxation − −− −−− +++ +++
Payer-anon ++ o ++ −−− +++
Payee-anon ++ o ++ −−− −−−
Security − o o −− ++
Conversion +++ −−− −−− +++ +++
Libre − +++ +++ − − − +++

Active collaborations

Freie Universität Berlin:
Programmability & embedded systems

The GNU Project:
Integration into FLOSS software

Fraunhofer Gesellschaft:
Identity management & SSI & wallet-to-wallet communication

NGI TALER:
11 partners deploying GNU Taler across Europe

NGI TALER PILOT
https://taler.net/en/consortium.html

▶ EU Project started December 2023 to deploy GNU Taler

▶ 3 financial institutions (GLS Bank, Magnet Bank, Visual
Vest), 2 academic institutions (Berner FH, TU Eindhoven), 3
SMEs (Taler Systems SA, Code Blau GmbH, Petit
Singularites), 3 non-profits (NLnet Foundation, E-Seniors
Association, Homo Digitalis)

▶ ≈ e 5M budget over 3 years

▶ Objective: Deploy GNU Taler in Europe

https://taler.net/en/consortium.html

Key NGI PILOT Activities

▶ Integration (core banking, online publishers, e-commerce,
public transportation)

▶ Compliant (establish compliance processes at each bank)

▶ Availability (packaging, porting to more platforms, browsers)

▶ Hardware support (offline payments, vending machines)

▶ Security audits of code and design

▶ Accessible (old people, children, blind users)

▶ Future-proof (post-quantum, standardized)

▶ Widely known and used (community building, open calls)

Launch Timeline

Q2’2022 Internal deployment at BFH

Q3’2024 Deployment of local currency Netzbon in Basel

Q4’2024 Public deployment of eCHF stablecoin in Switzerland,
cleared by FINMA

Q1’2025 GLS bank launches in Eurozone

Q3’2025 Magnet bank launches in Hungary

Other ongoing developments

▶ Privacy-preserving auctions (trading, currency exchange)
(oezguer@taler.net)

▶ Hardware and software support for embedded systems
(mikolai@taler.net)

▶ GNU Name System registry with GNU Taler payments
(schanzen@gnunet.org)

▶ Performance improvements for RSA in FLOSS crypto libraries
(NLnet project)

▶ Parallel verification of RSA signatures on GPUs
(libgpuverify.git)

▶ Tax-deductable receipts for donations to charities (donau.git)

▶ Unlinkable anonymous subscriptions and discount tokens
(merchant.git, branch)

▶ Support for illiterate and innumerate users7 (not yet funded)

7Background: https://myoralvillage.org/

https://myoralvillage.org/

How to support?

Join: https://lists.gnu.org/mailman/listinfo/taler

Discuss: https://ich.taler.net/

Develop: https://bugs.taler.net/,
https://git.taler.net/

Apply: https://nlnet.nl/propose, https://nlnet.nl/taler

Translate: https://weblate.taler.net/,
translation-volunteer@taler.net

Integrate: https://docs.taler.net/

Donate: https://gnunet.org/ev

Partner: https://taler-systems.com/

https://lists.gnu.org/mailman/listinfo/taler
https://ich.taler.net/
https://bugs.taler.net/
https://git.taler.net/
https://nlnet.nl/propose
https://nlnet.nl/taler
https://weblate.taler.net/
translation-volunteer@taler.net
https://docs.taler.net/
https://gnunet.org/ev
https://taler-systems.com/

Conclusion

What can we do?

▶ Suffer mass-surveillance enabled by credit card oligopolies
with high fees, and

▶ Engage in arms race with deliberately unregulatable
blockchains

OR

▶ Establish free software alternative balancing social goals!

Do you have any questions?

References:
1. Özgür Kesim, Christian Grothoff, Florian Dold and Martin Schanzenbach. Zero-Knowledge Age Restriction

for GNU Taler. 27th European Symposium on Research in Computer Security (ESORICS), 2022.

2. David Chaum, Christian Grothoff and Thomas Moser. How to issue a central bank digital currency. SNB
Working Papers, 2021.

3. Christian Grothoff, Bart Polot and Carlo von Loesch. The Internet is broken: Idealistic Ideas for Building a
GNU Network. W3C/IAB Workshop on Strengthening the Internet Against Pervasive Monitoring
(STRINT), 2014.

4. Jeffrey Burdges, Florian Dold, Christian Grothoff and Marcello Stanisci. Enabling Secure Web Payments
with GNU Taler. SPACE 2016.

5. Florian Dold, Sree Harsha Totakura, Benedikt Müller, Jeffrey Burdges and Christian Grothoff. Taler:
Taxable Anonymous Libre Electronic Reserves. Available upon request. 2016.

6. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. IEEE Symposium on Security &
Privacy, 2016.

7. David Chaum, Amos Fiat and Moni Naor. Untraceable electronic cash. Proceedings on Advances in
Cryptology, 1990.

8. Phillip Rogaway. The Moral Character of Cryptographic Work. Asiacrypt, 2015.

Let money facilitate trade; but ensure capital serves society.

Rights

▶ GNUnet e.V. shared copyrights of their AGPLv3+ licensed
code with Taler Systems SA

▶ Taler Systems SA holds copyrights to entire GNU Taler code
base (AGPLv3+, GPLv3+, dual-licensing exclusive domain of
Taler Systems SA)

▶ Taler Systems SA applied for patent on offline payment
solution

▶ Taler Systems SA holds trademark on “Taler”.

▶ FSF holds trademark on “GNU”, we are authorized to use
“GNU Taler”.

▶ Taler Systems SA owns taler.net and taler-systems.com.

	Motivation & Background
	GNU Taler: Introduction
	Component Zoo
	Protocol Basics
	Attacks & Defenses
	Offline payments
	Programmable money: Age restrictions
	Software development & deployment
	Performance
	Blockchain integration: Project Depolymerization
	Future Work & Conclusion

