
NEXT
GENERATION
INTERNET
GNU Taler for Developers

Iván Ávalos

Bern University of Applied Sciences

COSIN’24

What is Taler?
https://taler.net/en/features.html

Taler is
▶ a Free/Libre software payment system infrastructure project
▶ . . .with a surrounding software ecosystem
▶ . . . and a company (Taler Systems S.A.) and community that wants to

deploy it as widely as possible.
However, Taler is
▶ not a currency
▶ not a long-term store of value
▶ not a network or instance of a system
▶ not decentralized
▶ not based on proof-of-work or proof-of-stake
▶ not a speculative asset / “get-rich-quick scheme”

Florian Dold NEXT , GENERATION , INTERNET 2

https://taler.net/en/features.html

Taler overview

Exchange

Customer Merchant

Auditor

with
dra

w
co

in
s deposit coins

spend coins

verify

Florian Dold NEXT , GENERATION , INTERNET 3

Architecture of Taler

Florian Dold NEXT , GENERATION , INTERNET 4

Wallet architecture

Android iOS WebEx

wallet-core DB

Exchange

qtart/browserwallet-core API

sqlite3

HTTP

Florian Dold NEXT , GENERATION , INTERNET 5

GNU Taler wallet
wallet-core

wallet-core is the component that powers the Taler wallets across
different platforms. It is written in TypeScript and it implements of all the
core functionality required by the wallets. It takes care of the following:
▶ database management (SQLite3)
▶ task shepherding
▶ cryptography
▶ wallet operations
▶ communication with the exchange

Most of its functionality is exposed via requests. Apps using wallet-core
can interact with it by calling different request methods, passing
parameters, and then e.g. rendering in the UI the data contained in the
response or showing an error message.

Florian Dold NEXT , GENERATION , INTERNET 6

GNU Taler wallet
qtart

qtart (QuickJS TAler RunTime) is a QuickJS-based runtime that embeds
wallet-core into a native library for usage outside of the browser, such as
the mobile apps or any future desktop app.
▶ Based on the acclaimed QuickJS JavaScript engine.
▶ Implements native modules for cryptography.
▶ Supports native HTTP networking (with multi-threading).
▶ Provides access to the wallet-core API via a simple callback-based

interface.
▶ Keeps us from having to rewrite wallet-core for every platform!

Florian Dold NEXT , GENERATION , INTERNET 7

Wallet-core API
Introduction

Wallet wallet-core

request (JSON)

response (JSON)

notifications (JSON)

▶ Documentation: https://docs.taler.net/wallet/wallet-core.html

Florian Dold NEXT , GENERATION , INTERNET 8

https://docs.taler.net/wallet/wallet-core.html

Wallet-core API
Request structure

Field Type Description
id integer request ID

operation string API operation
args object request arguments

Example

{
"id": 0,
"operation": "init",
"args": { "logLevel": "INFO" }

}

Florian Dold NEXT , GENERATION , INTERNET 9

Wallet-core API
Response structure

Field Type Description
type string either response or error
id integer request ID

operation string API operation
result object response data

Example

{ "type": "response",
"id": 0,
"operation": "init",
"result": {...} }

Florian Dold NEXT , GENERATION , INTERNET 10

Wallet-core API
Notification structure

Field Type Description
type string will be notification

payload object notification data

Example

{
"type": "notification",
"payload": {

"type": "task-observability-event"
}

}

Florian Dold NEXT , GENERATION , INTERNET 11

Wallet-core API
Error structure

An error can be contained inside a response or a notification, and
includes the following data, in some cases along with extra fields:

Field Type Description
code integer GANA error code
when timestamp? time when it occurred
hint string? error message

Example

{ "code": 7001,
"hint": "could not resolve host: demo.taler.net",
"when": { "t_ms": 1718726899827 } }

Florian Dold NEXT , GENERATION , INTERNET 12

GNU Taler wallet
Building wallet-core

1. Install Python, Node.js, NPM and pnPM (https://pnpm.io/)
2. Clone the Git repository (https://git.taler.net/wallet-core.git)
3. Run the bootstrap script

$./bootstrap

4. Run the configuration script
$./configure

5. Build all the components!
$ make

Note: the relevant .mjs file for building qtart will be created under
packages/taler-wallet-embedded/dist/taler-wallet-core-qjs.mjs.

Florian Dold NEXT , GENERATION , INTERNET 13

https://pnpm.io/
https://git.taler.net/wallet-core.git

GNU Taler wallet
Building web extension

In order to build the web extension, please follow the steps in the
previous slide, and then run the following command:

$ make webextension

This will generate two files under packages/taler-wallet-webextension:
▶ extension/v2/taler-wallet-webextension-$VERSION.zip
▶ extension/v3/taler-wallet-webextension-$VERSION.zip

Those files are the final packaged extensions. Depending on the
manifest version supported by your browser, you should install either v2
(e.g. Firefox) or v3 (e.g. Chromium/Chrome).

Florian Dold NEXT , GENERATION , INTERNET 14

GNU Taler wallet
Building qtart (Android)

1. Install Docker and Docker Compose
2. Clone the Git repository (https://git.taler.net/quickjs-tart.git)
3. Copy into the root the .mjs file produced when building wallet-core.
4. Descend into the docker-android directory.
5. Create an empty .env file.
6. Run the following command:

$ docker-compose run --rm quickjs
A local Maven repository will be created under the .m2/repository
directory relative to the Git repository root. The absolute path to this
directory should be added as a URL to the project-level build.gradle file
of the Android app, under allprojects/repositories.

Florian Dold NEXT , GENERATION , INTERNET 15

https://git.taler.net/quickjs-tart.git

GNU Taler wallet
Building Android app

1. Install Android Studio.
2. Clone the Git repository (https://git.taler.net/taler-android.git).
3. Open the project with Android Studio.
4. Build qtart from source (optional).

▶ Build wallet-core from source.
▶ Copy the resulting .mjs file to qtart.
▶ Run the dockerized qtart build.
▶ Add local Maven repository to the Android project.

5. Build and run the Android app.

Florian Dold NEXT , GENERATION , INTERNET 16

https://git.taler.net/taler-android.git

GNU Taler wallet
Building iOS app

1. Install Xcode (in macOS).
2. Under the same directory:

▶ Clone the iOS app Git repository (https://git.taler.net/taler-ios.git)
▶ Clone the qtart Git repository (https://git.taler.net/quickjs-tart.git)

3. Build wallet-core from source.
4. Copy the resulting .mjs file to qtart.
5. Open the iOS project with Xcode.
6. Build and run the iOS app.

Florian Dold NEXT , GENERATION , INTERNET 17

https://git.taler.net/taler-ios.git
https://git.taler.net/quickjs-tart.git

Wallet-core CLI

The CLI can be used to test wallet-core features quickly. In order to install
(only) the wallet-core CLI and other CLI tools, run the following
command after setting up the wallet-core repository:
$ make install-tools
Useful commands:
$ taler-wallet-cli --help # print help message
$ taler-wallet-cli transactions # print transaction list
$ taler-wallet-cli handle-uri $URI # handle a Taler URI
$ taler-wallet-cli advanced withdraw-manually \

--exchange https://exchange.demo.taler.net/ \
--amount KUDOS:5 # perform manual withdrawal

$ taler-wallet-cli run-pending # attempt to finish all pending tasks
$ taler-wallet-cli run-until-done # run until all work is done

Florian Dold NEXT , GENERATION , INTERNET 18

Wallet-core CLI

It is also possible to call wallet-core API requests directly from the CLI,
even when there is not a command for it:

$ taler-wallet-cli api getWithdrawalDetailsForAmount \
’{"exchangeBaseUrl":"https://exchange.demo.taler.net/",

"amount":"KUDOS:10"}’

Florian Dold NEXT , GENERATION , INTERNET 19

Wallet-core CLI

By design, wallet-core CLI only performs background tasks during each
execution, and when it completes the requested action, it quits.
However, it is also possible to run it as a daemon and run commands in a
client-server fashion, as shown below:

Run the wallet as a daemon (in the foreground)

$ taler-wallet-cli advanced serve

Connect to the daemon and execute an action

$ taler-wallet-cli --wallet-connection=$HOME/.wallet-core.sock ...

Florian Dold NEXT , GENERATION , INTERNET 20

Hacking on wallet-core
Important files

▶ packages/taler-util/src/ (common Taler code)
▶ taler-types.ts (core Taler protocol type definitions)
▶ transactions-types.ts (transaction type definitions)
▶ wallet-types.ts (core wallet API type definitions)

▶ packages/taler-wallet-core/src/ (main wallet-core code)
▶ exchanges.ts (exchange management and operations)
▶ pay-merchant.ts (payments to merchants)
▶ pay-peer-*.ts (p2p send/receive operations)
▶ shepherd.ts (task scheduler)
▶ testing.ts (test functions)
▶ transactions.ts (transaction management)
▶ wallet-api-types.ts (wallet-core API request/response types)

▶ packages/taler-harness/src/ (integration tests)

Florian Dold NEXT , GENERATION , INTERNET 21

Other components

▶ Merchant
▶ Auditor
▶ Challenger
▶ Sync
▶ GNU Anastasis
▶ Twister
▶ libeufin

Florian Dold NEXT , GENERATION , INTERNET 22

Tutorials

▶ Wallet tutorials: https://docs.taler.net/taler-wallet.html
▶ Video tutorials: https://tutorials.taler.net/
▶ Support forum: https://ich.taler.net/

Florian Dold NEXT , GENERATION , INTERNET 23

https://docs.taler.net/taler-wallet.html
https://tutorials.taler.net/
https://ich.taler.net/

Funding

https://nlnet.nl/propose

Candidates that passed 1st round from April 1st submission proposed:
▶ Some more integrations (frameworks, ERP)
▶ Merchant implementation (?)
▶ Improvements to wallet usability

Florian Dold NEXT , GENERATION , INTERNET 24

https://nlnet.nl/propose

Acknowledgements

Funded by the European Union (Project 101135475). Funded by SERI (HEU-Projekt 101135475-TALER).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.

Neither the European Union nor the granting authority can be held responsible for them.

Florian Dold NEXT , GENERATION , INTERNET 25

