
Peer-to-Peer Transactions for Privacy-Preserving

Mobile Payments using GNU Taler

J. Florian Kimmes

November 10, 2020

Johannes Gutenberg University Mainz

Faculty 08 - Physics, Mathematics and Computer Science
Institute of Computer Science

Bachelor of Science Thesis

Peer-to-Peer Transactions for
Privacy-Preserving Mobile Payments using GNU

Taler

J. Florian Kimmes

1. Reviewer Prof. Dr. Nicolai Kuntze
School of Business
University of Applied Sciences Mainz

2. Reviewer Dr. Hans-Jürgen Schröder
Faculty 08 - Physics, Mathematics and Computer Science
Johannes Gutenberg University Mainz

Supervisor Prof. Dr. Nicolai Kuntze

November 10, 2020

J. Florian Kimmes

Peer-to-Peer Transactions for Privacy-Preserving Mobile Payments using GNU Taler

Bachelor of Science Thesis - November 10, 2020

Reviewers: Prof. Dr. Nicolai Kuntze and Dr. Hans-Jürgen Schröder

Supervisor: Prof. Dr. Nicolai Kuntze

Johannes Gutenberg University Mainz

Institute of Computer Science

Faculty 08 - Physics, Mathematics and Computer Science

Saarstr. 21

55112 Mainz

Abstract

GNU Taler offers a privacy-preserving payment system, enabling both online pay-
ments and mobile payments. This thesis’s objective is to make the system more
accessible for merchants by removing a complex server installation that is tradi-
tionally required to provide mobile payments through GNU Taler. The proposed
new architecture suggests reimplementing the server in a software development
kit and integrating it in the merchant’s point-of-sales smartphone application. This
thesis lays the groundwork for the necessary underlying peer-to-peer communication
through two new components: firstly, a proximity-based message exchange compo-
nent (ProxME) that discovers peers in its environment, automatically connects to the
correct peer, and establishes an authenticated and encrypted session; and secondly,
HTTP-over-ProxME (HoPME), which offers a framework for web service develop-
ment on top of ProxME, which facilitates the reimplementation of the necessary
endpoints that the merchant’s server must provide. The present thesis evaluates the
proposed system on the basis of requirements derived from user stories and relevant
security standards and finally comes to the conclusion that the proposed system is a
strong candidate solution for the thesis’s research objective, based on its improved
usability properties.

v

Contents

1 Introduction 1

2 Related Work 5

2.1 GNU Taler . 5

2.1.1 Overview . 5

2.1.2 Blind Signatures . 6

2.1.3 Taler Coins . 8

2.2 Conclusion . 9

3 Requirements Analysis 11

3.1 User Stories . 11

3.2 Security Standards . 13

3.2.1 OWASP Mobile Application Security Verification Standard . . 13

3.2.2 Payment Card Industry Data Security Standard 14

4 High-Level Architecture 15

5 Proximity-Based Message Exchange (ProxME) 19

5.1 Discovery and Negotiation . 19

5.2 Secure Channel . 21

5.2.1 Sodium . 21

5.2.2 Key Exchange . 22

5.3 Implementation . 24

5.3.1 Acceptor and Connector . 24

5.3.2 Transport Channels: Bluetooth LE 27

5.3.3 Protocol State Machine . 31

5.3.4 Secure Channel . 33

6 HTTP-over-ProxME (HoPME) 35

6.1 Web Service Provider Framework . 35

6.2 Implementation . 38

6.2.1 HTTP Parser and Generator 38

6.2.2 Router . 39

7 Evaluation 43

vii

7.1 User Experience . 43
7.2 Security . 44
7.3 Results . 46

8 Conclusion 47
8.1 Contributions . 47
8.2 Future Work . 48

Bibliography 49

viii

1Introduction

Mobile payments are becoming increasingly more popular and slowly but steadily
supersede cash payments in modern everyday life. Current research shows that
the mobile payment transaction volume in Germany — in fact one of the slowest
adopters of mobile payments in Europe [1] — has increased from just 133 million
Euros in 2017 to a projected 8.3 billion Euros in 2020 [2]. With an increasing
proportion of purchases made through mobile payments, so decreases the customers’
privacy. Cash payments are by nature anonymous. With cash transactions, neither
participant knows anything about the other party. This is in stark contrast to market-
leading mobile payment providers, such as Apple Pay, and Google Pay [1]. All
common mobile payment providers use systems in which an intermediary sees and
processes all transaction details, such as the initiator, receiver, time, and paid amount
of the transaction. Depending on the purchase, this can be highly sensitive data
and is highly susceptible to violations of privacy. The rising popularity of mobile
payments, however, shows that customers perceive an added value in using them.
This is confirmed by a recent survey of consulting company pwc [1], in which survey
participants state advantages such as convenience, simplicity, and ease of budgeting.
Problems, according to participants, on the other hand, are a lack of security and
privacy, a loss of control with stolen devices, and a perceived encouragement of
spending more quickly. The discrepancy between the perceived benefits on the
one hand, and the risks associated with the technology on the other hand, leads
to the assumption that in the future mobile payments need a better technological
foundation.

Recent research on mitigating privacy risks of online payments spawned the efforts
around the GNU Taler project, hereinafter simply referred to as Taler. Taler offers a
fully-fledged electronic online payment system for privacy-preserving payments. It
offers anonymity to the customer, but enforces income-transparency for the merchant,
by design. This results in the desirable situation, in which the customer benefits from
complete privacy, while the merchant must disclose all their income, which makes
tax evasion and other illegal business activities more difficult (see chapter 2 for an
overview of the Taler system or [3] for an in-depth discussion of the technology).
Additionally to online payments, Taler can be used for mobile payments as well,
and therefore solves the discussed privacy issues that are inherent to the currently

1

popular mobile payment solutions described above. Spreading the advantages of
this new technology to a broader audience is desirable.

Naturally, one of the major adoption factors for new payment systems is the number
of available merchants. It is therefore crucial to make the onboarding experience for
merchants as seamless as possible. Unfortunately, the Taler setup is quite complex
for mobile payment merchants, consisting of a point-of-sales terminal application
(POS app) and a backend server that customers connect to and that handles the
payment processes via HTTP messages. Setting up a server presents a major barrier
to entry for a merchant that wishes to give the Taler system a trial. In contrast
to webshops that must already maintain a server and large store chains that can
potentially justify the added expenses, small brick and mortar shops likely do neither
have the necessary know-how nor resources to deploy a production-grade payment
server.

This leads to the research question of the present thesis: how to make the GNU
Taler payment system more accessible for mobile payment merchants? The proposed
hypothesis is that a peer-to-peer architecture that connects the customer’s device
directly to the POS app of the merchant preserves Taler’s privacy guarantees and ad-
ditionally solves the installation complexity and therefore improves Taler’s adoption
rate with merchants.

This thesis designs a prototype implementation of the proposed alternative peer-to-
peer architecture, in which a Taler backend reimplementation is integrated with the
POS app. It develops two necessary components that provide a new communication
layer that easily integrates into existing Taler apps. The first component handles
the low-level peer-to-peer networking details. It discovers peers in close proximity
through the wireless capabilities provided by the smartphone, handles the connection
process to the chosen peer, and provides an authenticated and encrypted session for
Taler transactions. Building on the first component, the second component provides
a framework to facilitate the reimplementation of the necessary Taler backend
services inside the POS app. It features parsing and routing capabilities for HTTP
requests over the established peer-to-peer connection. A reimplementation of the
Taler backend is out of scope for this thesis but is assumed as given for the further
discussion.

Chapter 2 gives an introduction to the previous academic work done on Taler, as well
as the project’s current development state. Chapter 3 discusses the requirements
necessary for the proposed peer-to-peer system to work, including functional, non-
functional, and security requirements. A high-level overview of the architecture
proposed by this thesis is given in chapter 4, which is followed by the two main
modules that together form the majority of the proposed system in chapter 5 and

2 Chapter 1 Introduction

6 respectively. Finally, in chapter 7 the proposed system is evaluated in regard to
usability and security requirements.

3

2Related Work

2.1 GNU Taler

The Taler project aims to “provide a payment system that makes privacy-friendly
online transactions fast and easy” [4]. In 2016, Burdges et al. [5] designed the open
Taler protocol for electronic online payments. Taler is a payment system that is based
on the assumption that customers should have cash-like anonymity, but merchants
should be held accountable for transactions in order to be taxable. In 2019, Florian
Dold wrote his PhD thesis about the Taler system, contributing detailed insight into
the system [3].

By comparing the currently available payment systems, the authors identified several
design goals that their modern electronic payment system must accomplish: the
customer’s privacy must be preserved, transactions must be taxable, a healthy
payment provider competitions must be fostered and lastly the underlying currency
must be non-volatile (see [3] for a detailed discussion).

2.1.1 Overview

This section gives a high-level overview of the Taler payment system. A more in-
depth overview is provided by [5]. In order to explain the basic principles of the
Taler architecture and the interaction of its components, the key actors in the Taler
system are described in the following.

Taler payments are enabled by Taler “coins”. These coins are cryptographic tokens
that are passed between the different actors of the system as monetary transactions.
There are four key actors in the Taler system (illustrated in fig. 2.1).
The Customer anonymously withdraws coins from a Taler exchange and wire-
transferrs the counter-value of those coins to an escrow account at this exchange.
The customer stores the coins in her Taler wallet, a digital store on her device. She
can later spend the withdrawn coins at a Taler merchant.
The Exchange is a financial service provider that provides Taler coins to customers
(withdrawal) and receives Taler coins from merchants (deposition). It holds escrow
funds for all withdrawn coins in circulation that are wire-transferred to merchants

5

upon depositing.
The Merchant receives coins in exchange for goods and services. She deposits re-
ceived coins at the exchange in return for a wire transfer of the respective value.
The Auditor regulates Taler exchanges. Taler is designed to work in the legal frame-
work of existing payment providers. Exchanges are trusted entities in this system, in
the same way as banks and other payment providers are trusted entities in existing
payment systems. Given the fact that Taler coins are not a new currency but only
a representation for merchants that indicate that there is a counter-value for them
in an escrow account at the exchange, it becomes clear that the exchange provider
must be audited. Without audits, a rogue exchange provider could create coins with
no counter-value to defraud merchants and customers.

The cash-like cycle of coins, in which each participant can check the authenticity
of received tokens without authenticating the transaction partner, leads to the
anonymity of the customer. This is paired with an “online-check” of received coins
on the merchant-side that forces the merchant to deposit coins as soon as they are
received, in order to ensure their authenticity (see section 2.1.3 for details). This
“online-check” provides an obstacle for devious merchants that want to engage in
illegal activities (e.g., tax evasion).

Fig. 2.1: A Taler system overview [5].

2.1.2 Blind Signatures

Blind signatures form the basis of Taler coins, the cryptographic tokens that are
withdrawn from an exchange by customers and are then exchanged with merchants
in the process outlined in the sections below. This section gives a basic introduction
to the concept of blind signatures as introduced by [6].

The principle of blind signatures for anonymous payments has been suggested as
early as 1983 by David Chaum [6].

6 Chapter 2 Related Work

The general idea is to be able to cryptographically sign a digital document without
knowing the contents of it. In the case of anonymous cryptographic money, a bank
must be able to sign its monetary tokens without knowing the underlying secret.

Chaum proposes using a private signing function s′, its publicly known inverse s, a
secret commuting function c and its inverse c′. s and s′ behave exactly as one would
expect from signing functions: s(s′(x)) = x, with s revealing no information about
the nature of s′.

The important property of c is that it is commuting with s (i.e., c(s(x)) = s(c(x))),
resulting in the desirable property:

c′(s′(c(x))) = s′(c′(c(x)))

⇔ c′(s′(c(x))) = s′(x)

Additionally, c(x) reveals no information about the nature of x. This makes it possible
for the bank to sign c(x), without knowing what x is. The customer can later strip
the commuting function c, by applying c′ to the signed value. Chaum proposes the
following protocol to provide anonymous currency:

1. A customer generates a secret x, calculates c(x) and sends it to the bank.

2. The bank signs the received value with s′ and returns s′(c(x)) to the customer.

3. The customer can strip the obfuscating commuting function c by applying c′,
yielding c′(s′(c(x))) = s′(x).

4. Anyone can use public s to verify the signed s′(x).

Note that in order for the bank to know the value of the newly issued coin, every
signed token has the same value in this system, as the bank has no insight into
what it signs. Various options for introducing coin denominations are discussed in
[3]. However, the Taler system settled for using multiple signing keys to represent
different denominations. In this more elaborate approach, the signing party (i.e.,
the Taler exchange) has multiple signing keys that it uses to sign different coin
denominations. Each public signing key has a value and some metadata associated
with it, allowing all participants in the system to check the denomination of a coin
by comparing the signature to the keys provided by the issuing exchange.

2.1 GNU Taler 7

2.1.3 Taler Coins

Taler coins are implemented using a public key pair. Having access to a coin’s
private key makes a person the owner of said coin. Coins are only valuable if they
are (blindly) signed by an exchange, signifying a certain counter-value in escrow,
depending on the denomination associated with the signing key.

Withdrawing coins from an exchange works very similar to the protocol described
by Chaum:

1. The customer starts the withdrawal process and makes a wire transfer from
her bank account to the exchange.

2. The customer generates a new key pair and sends the blinded public key to
the exchange.

3. The exchange signs the key with the negotiated denomination signing key and
returns it to the customer.

4. The customer strips the obfuscating commuting function.

Customers hold their newly issued coin in a digital wallet. After receiving a signed
coin from the exchange a customer can hold it there until she decides to spend it.

Spending coins does not require any merchant-side customer authentication, as
the signed coins already guarantee a counter-value to the merchant from the ex-
change. This allows for an easier and quicker check-out experience than current
authentication-based flows. In order to facilitate the integration with Taler for web-
shops, Taler offers a merchant backend component that exposes an HTTP interface to
the webshop. This backend performs all cryptographic and operational processes,
like signing contracts, verifying signatures and storing transaction data (see fig.
2.2). This makes it easier for merchants to integrate Taler into their webshop, as all
necessary Taler code is provided and encapsulated by an HTTP API.

In addition to the added convenience for merchants, this architecture adds security
benefits, by encapsulating critical functions in a separated component which is
secured from direct access [5].

Once a customer wishes to pay a physical or digital commodity, the webshop creates
a contract, containing the terms of purchase. The contract gets signed by the backend
and then forwarded to the customer’s wallet. The wallet signs the contract with

8 Chapter 2 Related Work

Fig. 2.2: An example of the Taler backend performing validation and depositing of coins
[5]. The webshop frontend delegates all coin handling to the backend and waits
for a response.

enough coins (i.e., private keys of coins) to settle the costs laid out in the contract,
and sends it with the necessary coins to the webshop, which passes it on to its
backend for verification (roughly outlined in fig. 2.2).

The backend deposits the received coins at the issuing exchange, which can verify its
own (stripped) signature for each coin (as described in section 2.1.2). The exchange
can now either directly make a wire transfer to the merchant or aggregate multiple
deposits from the same merchant to settle the lump sum in one large wire transfer
to reduce costs. Either way, the exchange signals the outcome of the verification
to the merchant backend, which can then report it to the webshop to trigger the
appropriate business logic. It is important to note that without directly depositing
the coins, the merchant cannot receive any value, because a customer could attempt
to double-spend the coins. Only the merchant that deposits a certain coin first
receives its value from the exchange. This mechanism creates a safeguard against
tax evasion, as every purchase is registered.

2.2 Conclusion

Taler provides an easy and quick checkout flow for customers of webshops and
point-of-sale terminals, making it as convenient as other modern payment solution.
Additionally, it solves all other problems with current mobile payment solutions that
were stated by survey participants (see chapter 1). A lack of privacy was stated
as a concern that is addressed by Taler with its primary design goal. Customers
purchases are private from the exchange and from the merchant. Another concern
was the percieved lack of security of current solutions. Since Taler is developed
as free and open-source software, source code audits are possible for everyone,
including governments and other institutions that have an interest in a stable and
secure payment infrastructure. This hints at a potentially more secure system than
that of alternatives. Losing a mobile-payment enabled smartphone was also stated
as a concern. Since there is only ever a limited amount of Taler coins in a wallet

2.2 Conclusion 9

(the same way only a limited amount of cash is in a physical wallet), the risks of
stolen devices can be assessed much more clearly than with other mobile payment
wallets that are connected to credit cards or bank accounts. The risk of losing a Taler
wallet is the risk of losing the contained coins, however, the risk of losing a device
connected to a credit card is much harder to assess.

All in all, it can be said that Taler solves the motivating problems from chapter 1
very elegantly. It is clear that Taler provides a good solution for private payments
with the additional benefits outlined above making it a good fit for the underlying
technology of this thesis.

10 Chapter 2 Related Work

3Requirements Analysis

The following section develops the requirements that must be met by the proposed
peer-to-peer system. They are divided into functional requirements, non-functional
requirements, and security requirements. The proposed system is referred to simply
as the system throughout the following requirements. Two methodologies are used
to identify the requirements for the system. First, user stories are used to model
user expectations of the resulting system. This method is a user-centric software
engineering technique in which requirements are derived from short sentences
written from the user’s perspective. Only functional and non-functional requirements,
excluding security requirements, are collected here. As a second methodology, two
relevant security standards are examined for applicable security requirements.

3.1 User Stories

The user stories described in this section are inspired by the problems described in
chapter 1. For each user story, a set of requirements is deduced. In order to avoid
duplication, requirements are only listed for the first user story they apply to.

User Story 1:
“As a merchant I want to quickly set up a POS terminal app on my smartphone to receive
Taler payments.”

Functional Requirement 1: The system must accept incoming connections on the
merchant’s smartphone.
Functional Requirement 2: The system must display a QR code to convey the
necessary connection data to the customer.
Functional Requirement 3: The system must be able to scan connection data from
a QR code.
Functional Requirement 4: The system must establish a peer-to-peer connection
to exchange information between the customer and the merchant.
Functional Requirement 5: The system must be able to send and receive HTTP
requests.
Functional Requirement 6: The system must allow the exchange of Taler API ob-
jects.

11

Functional Requirement 7: The system must expose the necessary Taler APIs to set
up a Taler POS terminal.
Functional Requirement 8: The system must expose the necessary Taler APIs to set
up a Taler wallet.
Non-Functional Requirement 1: The system must be compatible with the latest
Taler merchant backend specification.
Non-Functional Requirement 2: The system must be downloadable as an app.

User Story 2:
“As a customer I want to be able to make a payment regardless of the specifications of
the merchant’s smartphone.”

Non-Functional Requirement 3: The system must work on smartphones running
Android 5.0 or later.
Non-Functional Requirement 4: The system must support Bluetooth LE as a trans-
port technology.
Non-Functional Requirement 5: The system can support other transport technolo-
gies such as Bluetooth, Wifi Direct, NFC, and ultrasonic sound.

User Story 3:
“As a customer I want payments to be quick and easy.”

Non-Functional Requirement 6: To set up a connection, the system must exchange
all necessary information with another system through scanning of exactly one QR
code.
Non-Functional Requirement 7: The duration of a transmission of coins for a pay-
ment must be at most as long as a credit card payment.
Non-Functional Requirement 8: The system must allow payments independently
of the exchange providers used by the participants to foster competition [7].

User Story 4:
“As a customer I want to rest assured that my payment information is secure.”

Non-Functional Requirement 9: The system must preserve all privacy characteris-
tics of the Taler system [7].
Non-Functional Requirement 10: The system must only disclose the minimal
amount of information necessary [7].
Non-Functional Requirement 11: The system must be implemented as free soft-
ware (see [8] for a definition) to provide transparency and user freedom [7].

12 Chapter 3 Requirements Analysis

Non-Functional Requirement 12: The system must be easily testable and therefore
dependable.
Non-Functional Requirement 13: The system must facilitate code-reuse to avoid
complexity.

3.2 Security Standards

Several standards exist in the space of (mobile) payment security. This section
outlines key security requirements as recommended by two relevant authorities.

3.2.1 OWASP Mobile Application Security Verification
Standard

The OWASP Mobile Application Security Verification Standard (MASVS) [9] offers
a general security guide for mobile application developers. It is important that
security critical applications like payment apps adhere to these essentials. OWASP
MASVS was developed to provide developers and users with a metric to determine
the security level of their applications. The following list contains all relevant
requirements as defined by MASVS.

Security Requirement 1: All app components are identified and known to be
needed.
Security Requirement 2: A high-level architecture for the mobile app and all con-
nected remote services has been defined and security has been addressed in that
architecture.
Security Requirement 3: All app components are defined in terms of the business
functions and/or security functions they provide.
Security Requirement 4: The app only requests the minimum set of permissions
necessary.
Security Requirement 5: All security controls have a centralized implementation.
Security Requirement 6: The app should comply with privacy laws and regulations.
Security Requirement 7: There is an explicit policy for how cryptographic keys are
managed, and the lifecycle of cryptographic keys is enforced.
Security Requirement 8: The app uses proven implementations of cryptographic
primitives.
Security Requirement 9: The app uses cryptographic primitives that are appropri-
ate for the particular use-case, configured with parameters that adhere to industry
best practices.

3.2 Security Standards 13

Security Requirement 10: The app does not use cryptographic protocols or algo-
rithms that are widely considered deprecated for security purposes.
Security Requirement 11: The app does not re-use the same cryptographic key for
multiple purposes.

3.2.2 Payment Card Industry Data Security Standard

The Payment Card Industry Data Security Standard (PCI DSS) [10] is a standard
for payment card processors. Even though Taler is not a payment card system, this
standard is still applicable, since it has extensive sections on POS terminal security.
The following list is an excerpt of the standard, containing only the most important
and relevant requirements defined by PCI DSS. Requirements already laid out by the
previous sections are not reiterated.

Security Requirement 12: Keep customer data storage to a minimum.
Security Requirement 13: Do not store sensitive authentication data after autho-
rization (even if encrypted). If sensitive authentication data is received, render all
data unrecoverable upon completion of the authorization process
Security Requirement 14: Use strong cryptography and security protocols to safe-
guard sensitive data during transmission over open, public networks.
Security Requirement 15: Maintain a documented description of the cryptographic
architecture that includes details of all algorithms, protocols, and keys used for the
protection of sensitive data, including key strength and expiry date.
Security Requirement 16: Store cryptographic keys in the fewest possible locations.
Security Requirement 17: Limit access to system components and sensitive data to
only those individuals whose job requires such access.

14 Chapter 3 Requirements Analysis

4High-Level Architecture

The following chapter provides an architectural overview of the proposed peer-to-
peer system. Firstly, the general idea of moving the Taler backend to an SDK is
discussed. Secondly, the key components that make up the SDK are presented. Lastly,
the internal relation of the components is described.

The original Taler design focuses heavily on separating the existing webshop busi-
ness logic from Taler logic. That makes perfect sense when catering for existing
webshops, as it reduces the amount of duplicated code and provides defence in
depth by separating critical code from the webshop’s attack surface. For mobile
payments, however, it makes the setup of merchant infrastructure significantly more
complicated (see fig. 4.1 for a comparison). The proposed peer-to-peer architecture
takes a radically different approach, found most often in mobile applications. Instead
of separating the merchant backend into an extra server, it is instead wrapped into
a software development kit (SDK) and provided to mobile application developers
as a library dependency. This paradigm shift has great implications for the usability
of point-of-sale terminal apps: a merchant must only download a single app to
her smartphone instead of installing and provisioning a server or hiring a system
administrator to do said task. While an SDK does not provide the same strict sepa-
ration as an extra HTTP connection, it still avoids code duplication in merchants’
implementations and provides a well-defined API as a soft separation of concerns to
help auditability.

(a) The traditional Taler payment process with a POS termi-
nal.

(b) The payment process with a POS ter-
minal in a peer-to-peer context.

Fig. 4.1: A comparison between the traditional Taler payment process and a peer-to-peer
approach (see chapter 2 for details on the Taler payment process).
(1) The terminal creates a contract in the backend. (2) The terminal sends the
contract terms to the wallet. (3) The wallet sends coins to the backend. (4) The
backend deposits the coins at the exchange.

15

The proposed peer-to-peer Taler SDK (P2PTalerSDK) is designed as an Android
library that can be included in existing projects, such as the Taler POS app [11]. It
comprises several important components that together make up all features of a peer-
to-peer enabled Taler backend server (fig. 4.2 illustrates a high-level overview of all
components). Two components, the Proximity-based Message Exchange (ProxME)
library and the HTTP-over-ProxME (HoPME) library are provided as prototypes by
this thesis. ProxME provides the low-level communication capabilities and HoPME
provides a framework for developing web services that run over ProxME. A core
component that is out of scope and therefore not part of the present thesis prototype
is the Taler backend server logic. In a traditional setup, it consists of all HTTP
endpoints that are exposed by the backend server. Even though it is out of the
scope of this thesis to provide a full reimplementation of the backend server, it is
nevertheless assumed in the P2PTalerSDK architecture for the sake of further analysis
(see section 8.2 for implementation recommendations).

Fig. 4.2: A high-level overview of the proposed architecture, showing the interrelation of
existing and new components. Green components are part of this thesis’s prototype,
orange parts are existing Taler components that must be adapted, and red parts
do not yet exist.

Note that this thesis focuses mainly on the architectural challenges of the merchant-
side in order to investigate the posed research question. However, to be able to
successfully communicate, both participants must implement the proposed architec-
ture. Peer-to-peer wallets can use either the ProxME implementation to send the
necessary HTTP requests to a merchant’s peer-to-peer app or use the traditional

16 Chapter 4 High-Level Architecture

implementation to connect to a regular backend server. Ideally, P2PTalerSDK would
provide the wallet’s API as well, however, that it out of scope for the thesis at hand
(see section 8.2 for suggested actions).

Internally P2PTalerSDK is designed as a layered architecture (see fig. 4.3). The
layers are modelled after the network stack that the SDK implements.

ProxME, as the lowest layer, is responsible for discovering compatible devices nearby,
connecting to the appropriate partner device, and setting up an authenticated and
encrypted session. The established session allows exchanging arbitrary-length byte
sequences that can be sent and initiated from both directions.

Built on top of this low-level session, the next layer provides an abstraction for the
necessary HTTP communication. Traditionally, HTTP is implemented on the TCP/IP
stack, but generally it is protocol-agnostic [12]. The HTTP-over-ProxME (HoPME)
layer features a server-side development framework. It receives, parses, and routes
HTTP requests. Controllers that are provided by the framework user determine
the HTTP endpoint’s features. HTTP Responses are automatically generated from
response objects, also defined in said controllers.

Using these two building blocks, the P2PTalerSDK layer provides the actual backend
functionality to both the wallet and the implementing app. The backend’s HTTP
endpoints are split into two categories. The first category contains all endpoints
that are consumed by the wallet in the traditional Taler architecture. These HTTP
endpoints are implemented using HoPME and are therefore exposed to the wallet
over a peer-to-peer connection. The second category contains all HTTP endpoints
that are traditionally consumed by the POS app (or webshop). These endpoints are
implemented using regular Java methods and are exposed as part of the P2PTalerSDK
library API. Apps that use the SDK, can therefore access these endpoints through
method calls.

The components that make up the architecture are all encapsulated as libraries that
work independently of the higher layers and independently of the project. This has
the considerable advantage that the solutions generalize beyond the Taler use case.
The omnidirectional real-time communication, offered by ProxME could potentially
be used in many diverse applications, such as games, collaboration software, or
other payment solutions. Similarly, the process of porting any set of HTTP-connected
components to a peer-to-peer context is substantially facilitated using the HoPME
library.

17

Fig. 4.3: An overview of all layers in the P2PTalerSDK architecture, using Bluetooth LE as
an example for the underlying wireless transport channel.

18 Chapter 4 High-Level Architecture

5Proximity-Based Message
Exchange (ProxME)

This section describes how ProxME solves the general problem of securely connecting
two devices in physical proximity for communication, without relying on a network
connection. Solving this problem requires several steps. Firstly, the correct communi-
cation participants have to be discovered from a pool of potential participants in any
given environment. Secondly, both participants have to negotiate a communication
technology that both devices support. Lastly, the established transport channel has
to be secured (i.e., encrypted and authenticated).

5.1 Discovery and Negotiation

Two devices running ProxME must have a mechanism to signal each other that they
are expected to connect. This phase in the connection is usually called pairing (e.g.,
within the context of Bluetooth [13]) and is performed by presenting the user a
set of discovered device names and letting her select the one she wishes to connect
to (see fig. 5.1). With ProxME, two users have to explicitly express their intent to
connect their devices to each other as well, however, the user experience is more
streamlined. In the context of mobile payments, in which this work is embedded,
users already have a mental model of how the payment process should work:
holding their smartphone near the POS terminal or scanning a QR code, followed
by a confirmation of the amount in an app. The ProxME setup does not disrupt this
model, as all it takes to connect is scanning a QR code. ProxME introduces two roles
to manage connections: an acceptor role and a connector role. The acceptor creates
and displays a QR code and asks the connector to scan it. After the connector scans
the QR code, both participants have all the necessary information to connect to each
other, negotiate the means of transmission and to start a key exchange.

In order to set up a connection, ProxME determines all supported means of transmis-
sion on each device. This may include any commonly supported radio transmission
technologies, hereinafter called transport channels, such as Bluetooth, Bluetooth
Low Energy, Wifi Direct, or even ultrasonic sound emitted from regular speakers
[14]. All these channels have different terminology and techniques to form the
initial connection, but all have similar semantics when it comes to connecting: one

19

Fig. 5.1: An example of a non-optimal user experience for payments: Android presents the
user a list of devices to pair with when scanning for Bluetooth devices.

device publishes information about itself and one or many other devices scan their
surroundings for published information, connecting to the transmitting device auto-
matically or on command. In order to unify the terminology, publishing is referred
to as advertising and scanning is simply referred to as scanning.

Figure 5.2 outlines the discovery process. The acceptor’s device generates a random
UUID (1) that is later used to identify whom to connect with and a new ephemeral
key pair for this connection’s encryption. This information — the UUID and the
public key, together with the supported channels — is then encoded in the QR code
(2) and presented to the connector (3). The connector uses this information and their
own set of supported channels to advertise on the preferred channel (4). Channel
priorities may be determined by transfer speed, reliability, and user preference.
Usually, the connector should choose the fastest channel offered by the acceptor.
Simultaneously, the acceptor scans on all offered channels for the newly generated

20 Chapter 5 Proximity-Based Message Exchange (ProxME)

UUID (4). Once the acceptor has received an advertisement package with the correct
UUID, both participants start a cryptographic handshake over that channel (5).

Fig. 5.2: The ProxME discovery process.

5.2 Secure Channel

In order to allow for secure communication, the participants set up application-layer
encryption on top of the established transport channel link. This encryption layer
is necessary because the underlying channel may not have any encryption at all,
as is the case with ultrasonic signalling [14], or the encryption ends early, as with
the Bluetooth Low Energy stack on Android, where all installed apps have access to
received packets [15].

5.2.1 Sodium

In adherence to security best-practices, all cryptographic implementations described
in this chapter rely on a well-established cryptographic library: Sodium [16], an
open-source and third-party audited project. It contains implementations of hard to
misuse primitives that can be used as building blocks for higher-level protocols. To
facilitate the discussion of the key exchange protocol below, the following section
explains the used concepts briefly.

Sealed Boxes allow an anonymous sender to encrypt a message to the public key of
a receiver. While the receiver can check the integrity of the message, she cannot
verify the identity of the sender [17]. Therefore, sealed boxes represent a one-way
channel for a single confidential message. Sealed Boxes are in the following denoted
as: sealedBoxpK(m), with pK := public key, m := message.

5.2 Secure Channel 21

Secret Streams offer the same guarantees as secret boxes per message but additionally
establish a stream state for both participants to check for duplicate or removed
messages in a stream of messages. By providing a simple means to ‘ratchet’ keys,
they also make it easy to achieve perfect forward secrecy [18]. Secret Streams
are in the following denoted as: secretStreamk,sss(m), with k := shared key,
sss := secret stream state, m := message.

Sodium offers, additionally to the explicitly mentioned primitives, miscellaneous
other functions that were used, such as secure key generation, secure nonce genera-
tion, and cryptographic hashing among others.

5.2.2 Key Exchange

The presented cryptographic protocol is split into two phases: The handshake phase
(see fig. 5.3, M0 −M3), in which two participants (connector and acceptor) agree
on a common secret k and the transport phase (see fig. 5.3, M4 −Mn), in which
the common secret is used to set up a two-way secret message stream that has all
properties of a secure channel. The handshake only authenticates the acceptor. If
the connector must also be authenticated, this has to be done in the transport phase
by a separate authentication scheme (e.g., comparing key fingerprints in person).

The connector initiates the handshake by scanning a QR code containing the ac-
ceptor’s ephemeral public key pA directly from her device’s screen (fig. 5.3, M0).
The connector then generates a pre-session key e and encrypts it to pA (denoted
as sealedBoxpA(k) in fig. 5.3, M1). Both the acceptor and the connector can then
calculate the same 256-bit session key k = h(pA||e), by concatenating pA and e, and
hashing the result using the SHA256 hash function. The acceptor acknowledges the
new key through a secret stream, the state (A→ C) of which is initialized with the
session key k and from then on used to encrypt messages from the acceptor to the
connector (fig. 5.3, M2). After receiving the acknowledgement, the connector sets
up her own secret stream state (C → A) and in turn sends an encrypted acknowl-
edgement to the acceptor (fig. 5.3, M3). Both participants now hold two secret
stream states. One for receiving messages and one for sending messages. This is
a robust mechanism for asynchronous communication because each state is only
incremented when receiving or sending a message respectively. At this stage, the
transport phase begins and both participants can use their respective secret stream
to encrypt messages to each other. If either participant receives an invalid message
at any point in the handshake, they abort and reset their handshake state. The
other participant times out and resets their handshake state as well. To keep the
protocol’s complexity to a minimum, and to prevent side-channel attacks, there is no
mechanism to resend lost messages.

22 Chapter 5 Proximity-Based Message Exchange (ProxME)

M0 functions as the root of trust in this protocol. Because of the in-person, out-of-
band transmission, the connector can be certain that pA belongs to the acceptor
and that, therefore, only the acceptor has the matching private key, essentially
authenticating anyone with knowledge of the private key sA as the acceptor. Due to
the nature of the transmission, this message cannot be tampered with by an attacker.
An attacker may be able to shoulder surf the QR code (i.e., eavesdrop), but not
change it (i.e., tamper with pA). Since the acceptor generates a new key pair for
every protocol run, the connector also knows that all messages that rely on pA are
fresh (i.e., are not replayed from previous runs). With pA the connector has already
all the information she needs in order to calculate the session key k. The connector
generates a new pre-session key e that she then hashes together with the received
public key pA to yield k. The result depends on fresh inputs from both participants,
preventing replay attacks.

M1 delivers the pre-session key e to the acceptor. This is the main common secret
used for the encryption of the secret channel. Since it is encrypted with pA, only
the acceptor can decrypt it and later use it, as she holds the matching private key
sA. Additionally, as only the connector received the public key pA for this session
(out-of-band), and guessing the random 256-bit value is infeasible, an attacker must
shoulder surf the QR code to be able to impersonate the connector. Note that this
mechanism doesn’t fully authenticate the connector, but introduces a substantial
defence against mass-impersonation in an attacker’s environment.

Messages M2 and M3 establish the secret stream on both sides of the connection and
acknowledge the shared secret. The acknowledgement messages are encrypted with
the session key k that contains 256 bits of entropy from both participants respectively.
Therefore, both participants have a guarantee that these messages are fresh.

The scheme guarantees perfect forward secrecy for every message throughout an
established session, as well as for every session itself. By creating a new public
key pA and new pre-session key e in every handshake, every session provides
forward secrecy. An attacker only gets insight into exactly the current session (i.e.,
neither previous sessions nor future sessions), should either key be compromised.
Additionally, Sodium’s Secret Stream implementation offers perfect forward secrecy
for messages in the stream’s context. While the streams are initialized with the
common secret k, each message is encrypted with a key that is newly derived from k.
An attacker that can break the encryption of one message, can therefore not decrypt
messages sent previously in the session.

5.2 Secure Channel 23

Fig. 5.3: The key exchange protocol scheme that establishes a secure channel between the
connector and the acceptor.

5.3 Implementation

ProxME’s implementation consists mainly of three modules. Each of these modules
is divided into two corresponding implementations: a connector implementation
and an acceptor implementation. While this implementation split is necessary to
offer different functions and processes depending on the role, the implementations
are often very similar. The first module is split into two classes, the Acceptor and
Connector, which offer an interface to the library user. Internally they manage
the connection state and house the other modules. The second module offers an
interface for the client and server of the different transport channels and their
respective implementations. Last but not least, the state machines that implement
the key exchange protocol are also split into the two roles outlined above and work
in sync to handle the key exchange and offer the user a secure channel.

5.3.1 Acceptor and Connector

The main interfaces that a (framework) user interacts with, are the Acceptor class
and the Connector class (API classes). Depending on what role the device should
assume, one of the two must be instantiated. Listing 5.1 gives an example of the
process. On an exemplary button click in line 21 ff., a new Acceptor is created.

24 Chapter 5 Proximity-Based Message Exchange (ProxME)

Lines 2–19 define the ProxMeCallback that handles various state changes in the
connection. ProxME hides a lot of the underlying complexity from the user. It only
messages the user to show the QR code string (on the Connector’s side, the scanned
QR code string is passed to the class constructor), to notify the user of connection
status changes, and to notify the user of received messages. The only other public
methods are start() and sendMessage(byte[] messageBytes). The former starts
the advertising/scanning process, and the latter encrypts and sends messageBytes
to the connected party.

1 Acceptor acceptor;
2 ProxMeCallback acceptorCallback = new ProxMeCallback() {
3 @Override
4 public void qrStringReady(String qrString) {
5 Bitmap qr = QrCode.build(qrString);
6 }
7

8 @Override
9 public void connectionEstablished() {

10 acceptor.sendMessage("foo".getBytes());
11 }
12

13 @Override
14 public void messageReceivedSuccess(byte[] messageBytes) {
15 Log.d(TAG, "Received message: " + new String(messageBytes));
16 }
17

18 //...
19 }
20

21 void onConnectClick(View view) {
22 acceptor = new Acceptor();
23 acceptor.onStateChanged(acceptorCallback);
24 acceptor.start();
25 }

Listing 5.1: An example showing the usage of the Acceptor class’s simple public interface.

Internally, multiple steps are executed on initialization. First, all available chan-
nels are enumerated. A modern flagship Android smartphone may support many
technologies, such as Bluetooth LE, Bluetooth, Wifi Direct and NFC, whereas older
smartphones usually come with a more restricted feature set. For the prototype of
the present thesis, only the Bluetooth Low Energy channel is implemented to provide
a proof-of-concept.

Then, the QR code string is generated or parsed, depending on the executed role.
Using a string (i.e., bytes) instead of binary data is a practical decision, based

5.3 Implementation 25

on the available QR encoders and decoders. The additional overhead that this
representation causes does not exceed the size constraints of a quickly readable QR
code and therefore does not warrant implementing a new QR encoder and decoder
on Android. The QR code structure is presented in figure 5.4. The first four bytes
represent the protocol version that the acceptor supports. A parser must read these
first four bytes and then parse the next bytes as outlined in the specification of that
version. For the proposed version 0000, the next eight bytes encode the supported
channels of the acceptor. Each of the eight positions represents one channel. Making
it possible to encode all possible combinations of eight supported channels. The
implemented prototype assumes that the first position represents Bluetooth Low
Energy and therefore only sets the first byte to one, with all others set to zero (i.e.,
10000000). The next 32 byte long field contains the acceptor UUID, a unique ID that
identifies every connection (see section 5.1). Lastly, the acceptor’s public key for this
connection is attached as a hex-encoded 64-byte string.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Channels

Acceptor UUID

Acceptor Public Key

Fig. 5.4: The QR code string definition for the ProxME discovery, as defined by version 0000
of the protocol.

The connection setup procedure is also coordinated by the API classes. Figure 5.5
shows how incoming and outgoing packets are routed in the different communi-
cation phases, to ensure that only ever encrypted messages are exchanged. Every
channel implements the ProxMeChannel interface (see lst. 5.2). This allows the
Connector and Acceptor to pipe messages to the channel without knowing the
exact implementation of the channel (e.g., Bluetooth LE or Wifi Direct). In order to
guarantee that the user cannot accidentally send or receive unencrypted messages,
the instantiated API class implements two separate callbacks for the channel (see
lst. 5.2, line 3): one for the key exchange and one for the user. Only when the
key exchange protocol module reports a successful handshake, is the user callback
registered. This ensures that the key exchange, as outlined in section 5.2.2, is
completed, before any message is sent over the secure channel.

The Acceptor and Connector classes can be therefore seen as the public API for
ProxME that implement the plumbing mechanisms for the underlying transport
channels and the key exchange module.

26 Chapter 5 Proximity-Based Message Exchange (ProxME)

(a) During the handshake phase, the Connector di-
rects all communication to to the key exchange
protocol module.

(b) After the key exchange module reports success,
it creates a secure channel module to which the
Connector directs all future communication.

Fig. 5.5: An overview of the interaction of the main components in the ProxME system,
using the example of the Connector class.

5.3.2 Transport Channels: Bluetooth LE

The prototype transport channel implementation is the Bluetooth LE network stack
on Android. Bluetooth LE was chosen because it offers a good common denominator
for cross-platform availability over several smartphone generations [15], [19]. A
high-level abstraction was introduced for transport channels, making the integration
of other transport channel implementations trivial. The ProxMeChannel interface
(see lst. 5.2) must be implemented by both sides of the connection, even if the
underlying paradigm assigns separate roles to the communication participants.
Bluetooth LE is one such technology. The Bluetooth Core Specification [13] outlines

1 public interface ProxMeChannel {
2 void sendMessage(byte[] message);
3 void onStateChanged(ProxMeChannelStateChangedCallback callback);
4 void start();
5 ArrayList<byte[]> split(byte[] messageBytes);
6 }

Listing 5.2: The channel interface that every transport channel must implement.

how a Bluetooth LE connection must be established. The specification separates the
connection into a peripheral and a central role. The peripheral acts as a server that
offers a set of services and the central acts as a client that consumes services offered
by surrounding peripherals. In the context of ProxME, the acceptor assumes the role
of the client and the connector assumes the role of the server.

5.3 Implementation 27

The Android operating system handles the low-level details of the Bluetooth LE
stack and only exposes interactions with the Generic Attribute Profile (GATT Profile).
The GATT Profile is the highest abstraction of the Bluetooth LE stack. It establishes
a framework of operations and definitions for how data must be transferred and
stored. The specification states that data is stored in GATT Characteristics. A GATT
Characteristic is simply a value accompanied by optional information on how the
data should be represented (GATT descriptors). GATT Characteristics are stored
in GATT services, which are “a collection of data and associated behaviours to
accomplish a particular function or feature of a device or portions of a device”
[20]. Multiple services together form a profile that fulfills a use case (see fig.
5.6). The GATT Profile integrates with the central–peripheral duality by enabling

Fig. 5.6: The GATT Profile structure as outlined in the Bluetooth Core Specification [13].

a remote key-value store. A characteristic is offered on the peripheral (i.e., server)
that can be remotely accessed by the central (i.e., client). The client can read
values from and write values to a characteristic, depending on the permissions
that are set by the peripheral. Additionally, a central can choose to subscribe to a
characteristic for notifications. The peripheral can then notify all subscribed centrals,
whenever something noteworthy happens on the peripheral (e.g., a characteristic
value changes).

Before a central can use a peripheral, it has to discover it. In Bluetooth LE the
ATT protocol that powers GATT offers advertising packets [21]. These packets
hold up to 37 bytes and can be used to simply broadcast information or to signal
that a peripheral has a service that is connectable. Scanning applications can filter
discovered advertising packets marked as connectable for certain criteria and then
connect via the GATT Profile method described above. In ProxME, advertising is

28 Chapter 5 Proximity-Based Message Exchange (ProxME)

done on the connector’s side because the Android operating system’s permission
system equates “access to Bluetooth Low Energy scanning” with “access to the
devices physical position [15]”. To use an app that scans, it is, therefore, necessary
to grant location permissions and have the Android location provider enabled at
all time. This is inconvenient for a wallet app since customers would essentially
be forced to have their location provider enabled at all times for quick and easy
payments. A merchant on the other hand has a well-defined time and location where
she would need to have the location provider enabled, namely on her job, in the
store. It is therefore an acceptable trade-off to scan on the merchant’s app instead of
the customer’s wallet.

As ProxME has only one task — sending arbitrary data — it has only one GATT
service: the ProxME GATT service. This service is advertised with the acceptor UUID
that the connector received via the QR code. The connector therefore filters for that
UUID and can be certain that no device other than the intended partner advertises it.
In line 2–7 of listing 5.3, a ScanFilter is set up using the acceptorId from the QR
code. The ScanSettings can be tuned to a high-burst, low-latency mode without
impacting the battery performance too much (see lst. 5.3, line 9–11), because
the scan stops as soon as the other device has been discovered, with a maximum
duration set to 30 seconds. This performance mode allows for quicker discovery.

1 ArrayList<ScanFilter> filters = new ArrayList<>();
2 filters.add(new ScanFilter.Builder()
3 .setServiceUuid(
4 ParcelUuid
5 .fromString(ProxMeProfile
6 .createUuidFromString(acceptorId).toString()))
7 .build());
8 ScanSettings settings = new ScanSettings.Builder()
9 .setCallbackType(ScanSettings.CALLBACK_TYPE_FIRST_MATCH)

10 .setScanMode(ScanSettings.SCAN_MODE_LOW_LATENCY)
11 .build();
12 bluetoothLeScanner.startScan(filters, settings, bleScanCallback);

Listing 5.3: Setting up an Android Bluetooth LE scan filter for the received acceptroId.

The ProxME GATT service holds the ProxME Message Characteristic, which is used as a
postbox. After a Bluetooth LE connection has been established, both participants can
use this characteristic to message the other party. On the one hand, the central can
write to the characteristic and therefore effectively send a message to the peripheral.
The peripheral, on the other hand, can notify the central of own changes and by this
means send messages to it.

5.3 Implementation 29

Android’s maximum transmission unit (MTU) on the ATT layer is 23 bytes by
default but ProxME negotiates the highest possible MTU that is supported by
both devices, up to 517 bytes. All ProxMeChannel implementations must offer
a split(byte[] messageBytes) method to split messages longer than the negoti-
ated MTU, to ensure that every message is properly encrypted and authenticated. If
a user wants to send a message longer than the negotiated MTU, the message is split
into MTU-sized chunks and each chunk must be encrypted and authenticated using
the secure channel laid out in section 5.3.3.

Listing 5.4 outlines the algorithm used to split long messages into MTU-sized chunks.
The algorithm assumes an incoming message as bytes in mBytes and the negotiated

1 ArrayList<byte[]> messages = new ArrayList<>();
2

3 // iteration message
4 byte[] m_i;
5

6 // step through message in mtu-sized chunks
7 for (int i=0; i < mBytes.length; i=i+mtu) {
8 // last iteration
9 // (current position + mtu exceeds message length)

10 if (i+mtu >= mBytes.length) {
11 m_i = new byte[mBytes.length - i];
12 System.arraycopy(mBytes, i, m_i, 0, mBytes.length - i);
13 }
14 // iteration i
15 else {
16 m_i = new byte[mtu];
17 System.arraycopy(mBytes, i, m_i,0, mtu);
18 }
19 messages.add(m_i);
20 }

Listing 5.4: The split method of the ProxME Bluetooth LE channel implementation. mBytes
is a byte[] that holds the original message and mtu is the negotiated maximum
transmission unit. After terminating messages holds a list of byte[] with a
length of at most mtu.

MTU as an int in mtu. Line 1 instantiates the ArrayList that holds a list of byte[]
that together make up mBytes and of which none has a length that exceeds mtu. m_i
holds the current iteration’s message chunk. The loop from line 7 to line 20 iterates
over the original message in MTU-sized steps, checking if it is the last iteration (line
10), and if not, simply copying the chunk to the m_i and adding it to the messages.
If it is the last iteration, it bounds-checks the remaining bytes and copies them to
m_i.

30 Chapter 5 Proximity-Based Message Exchange (ProxME)

5.3.3 Protocol State Machine

ProxME uses deterministic finite-state machines to ensure that the key exchange
either finishes successfully or fails early. There are mechanisms in place to prevent
side-channel attacks from timing information, as described further below. Each party
initiates a state machine on connection. Instead of reading symbols like conventional
state machines, they advance their states by sending and receiving valid protocol
messages. By doing so, they stay in sync and finish the handshake. As soon as
one party receives an invalid message, fails a cryptographic check , or otherwise
gets an invalid input, it discards any received input and resets to the initial state.
Figure 5.7 shows how the two state machine implementations complement each
other. Each state represents a message in the protocol outlined in section 5.2.2, one
noteworthy exception being state S4, which represents the successful handshake and
is implemented by a hand-over to the SecureChannel implementation outlined in
section 5.3.4. Once the state machine reaches S4 it uses the exchanged secret to
create said SecureChannel and signals via a registered callback that it successfully
finished the handshake, triggering that all future traffic, incoming and outgoing, will
be routed to this new object that handles encyption and decryption.

(a) The state machine modelling the acceptor’s handshake behaviour.

(b) The state machine modelling the connector’s handshake behaviour.

Fig. 5.7: The transition functions of the deterministic finite-state machines that model both
sides of the connector–acceptor handshake.

Figure 5.8 shows the chosen architecture for the state machine implementation. The
abstract KeyExchangeProtocol class holds the current protocol state (HandshakeState)
and provides methods to advance this protocol state. The server (KeyExchangeProtocolServer)
and client (KeyExchangeProtocolClient) extend this abstract class and provide
their implementations of the four HandshakeStates of the respective protocol de-
scription as private classes. Additionally, a reset() method is provided by the

5.3 Implementation 31

concrete child class to reset the state machine to the correct initial state and to
remove all cryptographic material from the protocol.

Fig. 5.8: A simplified architectural diagram, outlining the main key exchange protocol
implementation.

Once a protocol run is started using the start() method, the initial state is loaded
and executed. Using the acceptor’s initial state as an example, this section describes
the state progression (see lst. 5.5). The HandshakeState interface (line 1) dictates
two methods. First, the receiveMessage method, which is called by the protocol
context (KeyExchangeProtocol) as soon as it receives a message from the trans-
port channel (see fig. 5.5a). The protocol context passes itself and the received
message to this method (line 3), in order to process the message and then store
state-independent information in the protocol context. Second, the sendMessage
method. It is called internally by the protocol context anytime a valid message was
successfully received. This method also takes the KeyExchangeProtocol context
as a parameter, to store state-independent information. Additionally, it returns
the calculated response as a byte array, which will be forwarded to the transport
channel.

In the presented example, any incoming message is invalid, because the acceptor
does not expect a message in the initial state. The typical approach to handle this
case is, therefore, to reset the protocol, notify via a callback, and abort the handshake
(line 5–8). If a send is requested in this state, it generates a new key pair (line 16),
advances the state variable of the context to the next state (line 25) and returns the
public key to be sent (line 26).

This architecture is designed to facilitate auditing the soundness of the cryptographic
implementations in ProxME. All cryptographic components of the handshake are

32 Chapter 5 Proximity-Based Message Exchange (ProxME)

1 private class S0 implements HandshakeState {
2 @Override
3 public void receiveMessage(KeyExchangeProtocol context,
4 byte[] message) {
5 context.reset();
6 HandshakeException ex = new HandshakeException("...");
7 context.finishedCallback.keyExchangeAborted(ex);
8 throw ex;
9 }

10

11 @Override
12 public byte[] sendMessage(KeyExchangeProtocol context) {
13 Box.Lazy lazyBox = (Box.Lazy) lazySodium;
14

15 try {
16 context.kp_A = lazyBox.cryptoBoxKeypair();
17 context.p_A = context.kp_A.getPublicKey();
18 } catch (SodiumException e) {
19 context.reset();
20 HandshakeException ex = new HandshakeException("...", e);
21 context.finishedCallback.keyExchangeAborted(ex);
22 throw ex;
23 }
24

25 context.state = new S1();
26 return context.p_A.getAsBytes();
27 }
28 }

Listing 5.5: The initial state (S0) of the acceptor uses the sendMessage method to create a
new key pair. The receiveMessage implements the reset and signals a failed
handshake through a callback.

encapsulated in the described classes, outlined in this chapter, and are only exposed
to the rest of the system through a well-defined API. All steps of the protocol are
encapsulated in a separate state class and are therefore easy to comprehend. Since
the transition function (see fig. 5.7) is mostly linear, it is easy to audit as well.

5.3.4 Secure Channel

Once the handshake is completed, instead of advancing to the next state, the last state
notifies the API class of the success by using the keyExchangeSuccessful method
in the KeyExchangeCallback (see fig. 5.8). This method takes a SecureChannel
object (5.9) as a parameter. This contains all necessary key material for the two-way
encrypted stream.

5.3 Implementation 33

The SecretStream.State [18] is Sodium’s implementation of a secure channel (see
section 5.2.1). It is initialized on both sides with a 192-bit random nonce N that
is exchanged with the ACK messages in the handshake, as outlined above. Once
initialized with the session key and N , the state uses an incremented counter nonce
to ensure that messages cannot be removed, reordered, or duplicated. Message
authentication additionally ensures that messages cannot be truncated or modified.
[18].

The API classes interact with the secure channel through the use of the encryptMessage
method and the decryptMessage method. To send a message the outgoing message
must first be split according to the transport channel’s MTU size, as outlined in sec-
tion 5.3.2. The resulting ArrayList<byte[]> is then passed to the encryptMessage,
which encrypts each message part (byte[]) separately. Every message part con-
tains a tag indicating if it is the last in the series of parts comprising a longer
message, or if it is an intermediate link. Each received message part is passed to
the decryptMessage method upon receipt. There, the message is decrypted and
the attached tag is checked. If it is an intermediate message, it is stored in the
receivedMessageQueue and the method returns null. Else, if it is the last message
part the queue is concatenated and the resulting complete message is returned.

Fig. 5.9: A diagram that outlines the secure channel implementation.

34 Chapter 5 Proximity-Based Message Exchange (ProxME)

6HTTP-over-ProxME (HoPME)

HTTP-over-ProxME (HoPME) provides a framework to process HTTP requests in a
peer-to-peer manner. One Android device must assume the role of a client and one
must assume the role of a server. While usually, HTTP communication takes place
over TCP/IP connections [12], the proposed design uses the ProxME protocol for
the underlying transport instead. Two devices connect via the mechanisms outlined
in section 5.1 and then use the resulting persistent connection for multiple HTTP
exchanges. The framework can be thought of as a peer-to-peer web service provider
framework (WS provider). Note that the term web service only refers to the web
technology HTTP, but does not imply the need for a connection to the world wide
web. This thesis provides only the WS provider framework, as that is required to build
the Taler merchant backend web service. However, for meaningful communication,
the client must implement the equivalent endpoints as a WS consumer. Section 8.2
discusses potential future work on the client-side of HoPME.

6.1 Web Service Provider Framework

The WS provider framework’s main purpose is to provide boilerplate code, to facili-
tate writing ProxME-integrated web service endpoints. The framework user writes
only one WS method per endpoint. Related endpoints are then pooled in a controller,
which is used by HoPME for routing. The framework handles routing of incoming
requests, parsing of HTTP requests, and automatic generation of HTTP responses.
This allows for rapid development of peer-to-peer web service APIs such as the Taler
merchant backend API.

The general structure of the framework are illustrated in figure 6.1. The server
component initializes a ProxME acceptor and registers for incoming connections
using the provided callbacks, as outlined in chapter 5. After that, the server functions
mainly as a mediator between the transport layer and the router. Incoming requests
are passed to the parser. The parser deconstructs the request into its component
parts, namely the HTTP request method, the URI, the headers, and the payload, and
stores this information in a machine-readable Request object. The router then uses
this information to route the request to the correct controller. The router uses Java
annotations in the user-defined WS method implementation to determine where to

35

route the request to. Routing is determined by the HTTP request method and the
URI. The WS method in the controller must specify the parameter it expects from
the request and return a Response object, containing a status code, and optionally a
payload. The server then delegates the Response to the HTTP generator and sends
the resulting HTTP response via the ProxME API to the client.

Fig. 6.1: The HoPME framework architecture, with all framework-provided components
colored green, and the user-provided components colored yellow.

Using the framework is simple. To implement a new WS endpoint, the user simply
creates a WS method in which she implements the feature that should be offered by
the new web service. HoPME organizes WS methods in controllers. Controllers are
a collection of WS methods that represent endpoints that are logically associated.
These controllers are then registered with the router and are thereby activated. A WS
method is a standard Java method, but with exactly one Java annotation added, indi-
cating the WS endpoint and the HTTP request method that it represents (see lst. 6.1,
line 3). The annotation name indicates the HTTP method type (e.g., @GetMapping
for GET, @PostMapping for POST, etc.), and the annotation value specifies the URI at
which the endpoint is located (e.g., "/orders/4"). Any path segment in the URI can
be replaced by a variable. Such path variables must be surrounded by braces (e.g.,
/orders/{ORDER_ID}), and must be specified as a parameter in the Java method
signature (see lst. 6.1, line 6). Every method parameter must correspond to one
of three parameter types defined in the following and must be annotated accord-
ingly. Path variables, denoted by the braces described above must be annotated as
@PathVariable("foo") where the annotation value must be equal to the variable
in the path segment. Request parameters are key-value pairs, appended to the URI.
Each pair is separated by an ampersand: e.g., /orders?foo=bar&foo1=bar1. These
are annotated with @RequestParameter("foo"), where the annotation value rep-
resents the parameter key. HTTP requests have an optional request body that can

36 Chapter 6 HTTP-over-ProxME (HoPME)

be specified as a parameter annotated as @RequestBody. The method arguments

1 public class TalerPaymentsController extends Controller {
2

3 @GetMapping("/orders/{ORDER_ID}")
4 public Response getOrder(@RequestParameter("foo") boolean foo,
5 @RequestParameter("bar") String bar,
6 @PathVariable("ORDER_ID") int orderID,
7 @RequestBody PaymentRequest request) {
8

9 //...
10

11 PaymentResponse response = new PaymentResponse();
12 return new Response(StatusCodes.TEAPOT, response);
13 }
14 }

Listing 6.1: An example HoPME controller class, demonstrating how a WS method looks
like.

are extracted from the routed HTTP request and are passed to the appropriate WS
method parameter, based on the aforementioned Java annotations. Since HTTP
requests are parsed from ASCII text and encoded data [12], the extracted values
must be cast to the parameter types defined in the method signature. This casting
ensures that the WS method invocation is type-safe. Malformed HTTP requests,
with invalid parameter values, are therefore discarded before reaching the controller
logic, making any type checking logic redundant.

Custom user-defined objects are “cast” using serialisation. Usually web services
use JSON or XML to transport payloads [22]. Taler specifies API objects that are
exchanged between the client and the merchant backend web service, serialized
as JSON. However, because of the harsh network conditions of ProxME, HoPME
automatically serializes API objects as CBOR. CBOR uses the JSON data model of
nested key-value mappings with various pre-defined data types, but instead of a
human-readable format, it uses a concise binary representation [23]. This results in
a much smaller message size than JSON, especially when transferring binary data,
because JSON uses a base64 encoding for binary data, adding more overhead to
the message size. The smaller message size in turn leads to shorter transmission
times [23]. The CBOR serialization and deserialization happens transparently at the
framework level, enabling the user to simply work with API objects, defined on both
sides, without having to worry about transport encodings.

Every WS method defined in a HoPME controller, must return a Response object.
This response object holds a response code and optionally an arbitrary object (see lst.

6.1 Web Service Provider Framework 37

6.1, line 12). When processing the response, the HTTP generator will serialize the
object to CBOR, as described above, and add it to the generated HTTP response.

6.2 Implementation

The HoPME implementation encapsulates much of the complexity that the user
is spared. In order to offer the possibility of a simple controller implementation
to the framework user, HoPME parses the Java annotations of each method and
provides algorithms to route requests accordingly. Java annotations are evaluated
by using Java’s reflection API. The process of reflection allows a Java program to
introspect and change behaviour at runtime. It can therefore parse annotations and
dynamically build a map of routes. The routing implementation and an HTTP parser
and HTTP generator are presented in the following sections.

6.2.1 HTTP Parser and Generator

The first important feature of HoPME is parsing and generating HTTP messages.
HTTP messages are defined in [12]. A client sends HTTP requests and the server,
thereupon, sends HTTP responses. An example request to the Taler project’s demo
backend is displayed in listing 6.2 and the server’s response can be seen in listing
6.3.

Requests consist of three segments. Firstly, the Request-Line, containing the HTTP
request method, the URI with optional request parameters and the protocol version
(fig. 6.2, line 1) must be specified. The request method specifies the semantic
meaning of the request and the URI points to the requested resource. Request
parameters are key-value pairs concatenated by an equal sign character. They are
separated from the URI by a question mark character and from each other by an
ampersand character. Secondly, a series of header lines follow, each containing a
header-key and a header value, separated by a colon character (line 2–5). Lastly,
an optional payload following a blank line may be added. This payload consists of
binary data, the encoding of which must be specified in the Content-Type header. As
outlined above, HoPME always uses CBOR as a payload encoding.

Responses have a similar structure to requests (see lst. 6.3 for an example). The
first line, the Status-Line is constructed from the protocol version, a status code and
textual representation of the status code. The status code represents the result of
the server’s “attempt to understand and satisfy the request” [12]. The structure of
the rest of the responses is the same as the structure of requests outlined above.

38 Chapter 6 HTTP-over-ProxME (HoPME)

There are several open-source Java implementations of HTTP parsers. However,
there are no production-grade implementations that are independent of the TCP/IP
stack. Parsing and generating HTTP is simple since all characters, including delim-
iters, are ASCII characters. Constructing and deconstructing messages is well-defined
in the protocol specification and this thesis’s implementation does not involve any
innovation, other than that it is available without any coupling to the TCP/IP stack.
The implementation details will therefore not be reiterated here. The parser creates
a HttpRequest object from the extracted information, which can be used and un-
derstood by other HoPME components. Analogously, the generator assembles valid
HTTP responses from HttpResponse objects.

1 GET /orders/202...Q7E?token=N35...GNW HTTP/1.1
2 Accept: */*
3 Accept-Encoding: gzip, deflate
4 Connection: keep-alive
5 Host: backend.demo.taler.net

Listing 6.2: An exemplary GET HTTP request, issued to the demo backend server operated
by the Taler project.

1 HTTP/1.1 402 Payment Required
2 Access-Control-Allow-Origin: *
3 Connection: keep-alive
4 Content-Encoding: deflate
5 Content-Length: 272
6 Content-Type: application/json
7 Date: Thu, 05 Nov 2020 11:40:15 GMT
8 Server: nginx
9

10 {
11 "already_paid_order_id": null,
12 "fulfillment_url": "https://shop.demo.taler.net/en/essay/...",
13 "taler_pay_uri": "taler://pay/backend.demo.taler.net/202..."
14 }

Listing 6.3: The Taler demo backend server’s HTTP response to a GET request to the
/orders/<orderId> endpoint.

6.2.2 Router

The router, as the second and arguably more interesting feature of HoPME, has three
important tasks. First, it holds a map of all routes. A route is a link between an HTTP
request method plus URI and a WS method. The user’s controllers are registered
with the router and the router extracts a route for each WS method. Second, it
routes incoming requests to the correct controller and WS method. Since this is the
most common task of the router, this must be a fast operation. Lastly, it maps and

6.2 Implementation 39

casts arguments from the HTTP request to the required parameter type in the WS
method. The following section describes the necessary processes that are executed to
accomplish the outlined tasks. Figure 6.2 presents a simplified diagram illustrating
the involved Java classes and their relation to each other.

Fig. 6.2: A simplified diagram, outlining the interaction of various classes that provide the
routing functionality. Some details were left out for clarity.

A framework user registers her controller (denoted as ConcreteController in fig.
6.2) using the addController method in the Router class. Upon registration, the
Router uses the Java reflection APIs to validate each method in the controller. Each
method must have exactly one annotation, specifying the HTTP request method
and the URI, as outlined in the previous section. Additionally, the Router checks
all parameters in the same manner. Each parameter must be annotated with the
correct parameter type. For each method a new Route is created and stored in the
Router. A Route contains all necessary information to later route incoming HTTP
requests to the correct WS method. The URI and HTTP request method are extracted
from the Java method annotation. The parameter annotations provide a parameter
identifier and the type of the parameter (i.e., PathVariable, RequestParameter, or
RequestBody). This information is later used to map incoming request data to the
correct parameter. The provided URI is decomposed into its segments and stored
as an array of UriComponents. Each variable segment is marked as such. Once the
Route is fully assembled, it is added to the Router’s cache for routing.

Listing 6.4 shows the implementation of the routing procedure. The server passes
incoming HttpRequests to the shown route method. This method searches all
registered Routes for a match, maps the request data onto the expected WS method
parameters, executes the WS method and returns the response to the server. Since
all annotations from WS methods are already parsed and validated upon registration
of the associated controller, finding the correct Route is simple and fast. Each route
compares the provided request method type and the requested URI to its stored data
(line 3,4). When comparing the URIs all variable segments are simply skipped (i.e.,

40 Chapter 6 HTTP-over-ProxME (HoPME)

segments surrounded by { and }). A route matches a request if the request method
type and all non-variable segments match.

Each route stores its respective WS method as a Method reference, which is a class
that is part of the Java reflection API. The Method class offers the invoke(Object obj, Object... args)
method. This executes the method on the object that is provides as the first first
argument. It uses all following provided objects as arguments for that method
execution. Line 7–12 show how this principle is applied in HoPME. First, the
createParameterOrder method is used to extract the necessary information from
the httpRequest, as an array of objects, sorted by their occurrence in the argument
list for the executed method. This is done by iterating over the stored parameter
list of the route object, and for each extracting necessary information from the
request (e.g., the request body). Each argument generated this way, is then cast to
the expected type (i.e., deserialized from a string representation) and stored as an
Object in the correct position in an array. In order to serialize and deserialize objects
to CBOR, the open-source library Jackson is used, with the official CBOR-backend
implementation. The library is well integrated with Android and production-ready
[24]. After extracting this argument list, the target WS method is invoked, in line
10–12, by passing the controller as a first argument and the obtained argument
list as a second argument. The Java Virtual Machine then unwraps the array of
objects and passes each as a new argument to the target method, in the order they
appear. The resulting Response object, defined by the user is returned to the server
for further processing.

6.2 Implementation 41

1 public Response route(HttpRequest httpRequest) {
2 for (Route route : routes) {
3 if(route.match(httpRequest.getMethodType(),
4 httpRequest.getUri())) {
5 try {
6 // call matching controller route
7 Object[] parameters
8 = createParameterOrder(route, httpRequest);
9 Object responseObject

10 = route.getMethod().invoke(
11 route.getController(),
12 parameters);
13

14 // process response
15 if (!(responseObject instanceof Response)) {
16 throw new ServerException("Invalid response.");
17 }
18 return (Response) responseObject;
19 } catch (Exceptions...) {
20 throw new ServerException("Invalid request.");
21 }
22 }
23 }
24 throw new RoutingException("Could not find route.");
25 }

Listing 6.4: The route method tries to match an incoming HTTP request to a registered
route. It executes the registered method and returns the HTTP response.

42 Chapter 6 HTTP-over-ProxME (HoPME)

7Evaluation

This thesis is built on the belief that a peer-to-peer architecture improves the Taler
system in mobile payment scenarios. The following section evaluates the proposed
solution, and thereby the underlying assumption, based on the requirements outlined
in chapter 3. The evaluation is split into two domains: the user experience and
the security of the implementation. Improvements to the user experience must be
evaluated to determine if the proposed system is an effective solution to the research
question. However, because of the significant architectural changes in the underlying
communication platform, the security of the new system must be evaluated as well,
to identify potential negative trade-offs.

7.1 User Experience

The main goal of the peer-to-peer Taler payment system is to facilitate the merchant’s
installation process, and therefore to smoothen the onboarding experience. The
following two scenarios showcase the change in user experience.

In this first scenario, a merchant sets up a full POS terminal installation using the
traditional Taler architecture. First, the merchant downloads the Taler POS app [11]
to her smartphone. At the first start of the app, it demands a URL to download the
POS terminal configuration file which contains a list of the details of all offered
products, and the location of the Taler merchant backend. To continue, the merchant
must now install the Taler merchant backend and an accompanying SQL database on
a server she hosts [25]. After installing and configuring the server, she can statically
host the POS terminal configuration file and provide the URL to the POS app. The
POS app is now fully functional. To complete this whole procedure, the merchant had
to own and set up a server, install and configure a Taler backend server, and configure
the network securely. Surely, this is a task for a system administrator, especially with
regard to the criticality of the data this system handles in production.

The second scenario describes the same procedure with a modified version of the
Taler POS app, containing the P2PTalerSDK. First, the merchant must download the
Taler POS app. At the first start of the app, it prompts the merchant to enter the
details of all offered products. After entering the details, the app is fully functional.

43

It is abundantly clear that the difference in installation complexity from the first to
the second scenario is a significant reduction, all other things being equal. However,
for the new merchant implementation to work, a paying customer must also run a
modified Taler wallet app that enables peer-to-peer communication through ProxME.
The user experience of the customer must therefore also be taken into consideration.
Fortunately, the customer’s usage pattern is not impacted by a peer-to-peer wallet:
she scans a single QR code from the merchant, in both cases. As already outlined
in chapter 4, the user’s wallet is able to simultaneously support both the peer-
to-peer architecture and the traditional Taler architecture. Therefore, changes
to the underlying transport are hidden from the customer, when paying either
at a peer-to-peer merchant, or a server-bound merchant. On a positive note for
the customer, the peer-to-peer architecture partly solves the problem of customer–
customer transactions as a side effect. Since the peer-to-peer system must be included
in the wallet implementation anyways to support sending peer-to-peer payments, it
can, in principle, additionally be used to receive peer-to-peer payments. Wallet apps
could implement the needed user interfaces for receiving private Taler transactions
from other customers. This practice was originally suggested as a topic of further
research in [5]. It is beyond the scope of this thesis to discuss the details of the
scheme and additional arrangements needed.

All in all, it can be said that the peer-to-peer system accomplishes its main goal
without major trade-offs. P2PTalerSDK provides a good solution to the usability
problem it aims to solve by heavily reducing the installation complexity of the
merchant. Additionally, it offers an indication for further usability improvements on
the customer-side.

7.2 Security

In order to assess the security properties of the proposed system, the security
requirements described in section 3.2 are grouped into categories by topic. The
proposed system is analyzed with respect to each category.

The first group of security requirements is concerned with the architectural integrity
of the proposed software system. Security Requirement 1–5, and 15 deal with the
design and functioning of software components and their relation to each other. The
architecture (chapter 4, as well as the individual components (chapter 5 and 6) are
described in detail — especially with regard to security-critical components. The
thesis at hand provides a design document for the proposed system and security
features are a primary component of its design principles. All requirements that are
part of this group are met by the design and documentation process in this thesis.

44 Chapter 7 Evaluation

The second group of security requirements describes the correct use of cryptographic
material and algorithms. The following requirements are members of this group:
Security Requirements 7–11, 14, and 16. Even though cryptography plays a major
role in this thesis, its application is deliberately contained in a limited, well-defined
module: the ProxME protocol (see section 5.3.3 and 5.3.4). All other components
rely on this module to exchange critical information securely, but must not be
assessed in terms of compliance with cryptographic requirements, because of the
strict separation of concerns. This principle facilitates the following evaluation of
security requirements greatly. The ProxME protocol implementation uses Sodium,
an open-source, third-party audited cryptographic library that defaults to modern
best practice cryptographic primitives and parameters. This ensures that the protocol
is based on a solid foundation and is not susceptible to known attacks against the
used algorithms and primitives. The protocol specification outlines clearly when and
how to use, and when do discard key material. The protocol implementation — a
state machine — guarantees that keys are never accidentally reused by resetting all
cryptographic state on an error and on restart of the protocol. All requirements in
this group are therefore met due to the careful separation of concerns, adherence to
cryptographic best practices and detailed specification of cryptographic protocols.
Future implementations of the Taler merchant backend logic and Taler wallet logic
that may be integrated into P2PTalerSDK, very likely contain cryptography and must
then be reevaluated by the latest security standards.

The last group of security requirements is concerned with access control and safe-
guarding private data. Requirements in this group are Security Requirement 6, 12,
13 and 17. Taler’s unique approach to payment processing, in which payments do
not produce customer data, greatly facilitates the assessment of requirements in this
group. The P2PTalerSDK does not process personally identifiable information of
customers, and therefore no customer data is stored in the process. This ensures that
the proposed system is in accordance with the fundamental ideas of most privacy
regulations. The proposed shift from a server-centric architecture to an app-centric
architecture simplifies the concept of access control. In the traditional Taler installa-
tion, a merchant must monitor and manage access for employees, whereas with an
app the concept of access control could be reduced to physically having access to the
smartphone. The requirements of this final category are also entirely met, through
the inherited privacy guarantees from Taler and the user-empowering peer-to-peer
design.

The proposed system was designed and implemented with the latest security best
practices and guidelines in mind. All developed security requirements are met by
the proposed system. This suggests that P2PTalerSDK is based on a solid security
foundation and is a good candidate for further research.

7.2 Security 45

7.3 Results

The P2PTalerSDK attempts to solve the problem of improving merchant adoption
rates of GNU Taler. The preceding evaluation unambiguously illustrates that it is
a good candidate solution for this problem, as it removes an enormous barrier to
entry for potential merchants. The simplified installation and maintenance leads to
a reduction of costs for both, merchants that contemplate trying out Taler, and for
merchants that run Taler productively in their shop. This reduction of costs mainly
materializes through reduced costs in human resources, but also from the difference
in initial acquisition costs (i.e., server vs. smartphone), and maintenance costs
(i.e., electricity and depreciation). Additionally, the architectural changes do not
degrade Taler’s privacy guarantees and provide a security level that is in accordance
with current digital payment security standards. All in all, it is very likely that the
proposed system would lead to higher adoption rates by merchants.

46 Chapter 7 Evaluation

8Conclusion

8.1 Contributions

The thesis at hand provides an alternative to Taler’s server-based mobile payments
architecture, in order to offer a solution to the research problem of facilitating the
adoption of the Taler technology.

The proposed architecture removes the need for merchants to operate a backend
server by setting up a peer-to-peer connection between the customer’s and the
merchant’s mobile device. This new architecture is implemented by providing
P2PTalerSDK, a mobile SDK that wraps the merchant’s backend server and runs it
on her smartphone. While not reimplementing the Taler backend itself, this thesis
contributes the underlying network technology stack that enables a peer-to-peer
exchange of Taler coins.

First, this thesis develops a new library, ProxME, that handles discovery, connection,
and secure communication of mobile devices in close proximity. ProxME, discovers
the correct communication partner through scanning of a QR code. To find peers
in close proximity, the prototype implements an automatic wireless advertising and
scanning technique, using Bluetooth Low Energy. Once two ProxME devices have
discovered each other, they use state-of-the-art cryptography to set up an encrypted
and authenticated wireless connection. Using this connection, both participants can
initiate communication and exchange messages securely.

Second, to make the integration of existing Taler backend code as easy as possible,
this thesis provides another library, HoPME, that uses ProxME to exchange HTTP mes-
sages with close-proximity peers. HoPME acts as a regular web service framework
for the implementation of the SDK’s backend server, but tunnels all communication
securely via the underlying ProxME peer-to-peer connection. HoPME features an
HTTP parser and generator that handles incoming and outgoing HTTP messages
transparently. Internally, web service endpoints must not care about the underly-
ing protocol. HTTP requests are automatically routed by the HoPME framework,
allowing for rapid development of HTTP endpoints.

47

Finally, the evaluation of the proposed system reveals that it is a very strong candidate
solution for the research problem of this thesis. The introduced architecture removes
a great barrier to entry for merchants and the evaluation results point, therefore,
towards higher adoption rates.

8.2 Future Work

This thesis provides only a partial implementation of the proposed architecture.
In order to develop a fully functioning prototype, the following components must
be investigated in further research. First and foremost, the Taler backend must
be ported to the P2PTalerSDK. Since the backend is written in C [26], the Java
native interface API [27] can be used to run the original implementation on the
smartphone. A Java native interface wrapper must be written for each of the
backend server’s public endpoints. These wrappers can then be called by a thin
HoPME implementation for each web service. Alternatively, the backend could be
reimplemented in Java. In both cases, HoPME facilitates development by providing a
simple framework to implement the required web service endpoints. Second, HoPME
should ideally provide a client-side framework to easily create HTTP requests over
ProxME. Currently, in order to communicate with a merchant, the customer’s peer-
to-peer wallet implementation must craft HTTP messages and manually send them
over ProxME. This makes a port of the Taler wallet cumbersome. Third, ProxME is
designed to be easily extensible with new transport channels. However, the current
prototype only supports Bluetooth LE. To cover a wide range of supported devices
more transport channel implementations are needed.

In addition to developing new components, there are interesting research problems
in the field of improving the existing architecture. Firstly, a formal verification-proof
of correctness of ProxME’s key exchange protocol, described in section 5.2, has
yet to be provided. This is an important contribution that would strengthen the
costumer’s trust and confidence in the system. And secondly, in order to make the
prototype implementation of ProxME and HoPME ready for operation in a production
environment, a testing methodology must be established and implemented for the
existing codebase. Especially unit tests for the cryptographic implementations are
recommended.

48 Chapter 8 Conclusion

Bibliography

[1] Prof Dr Nikolas Beutin and Maximilian Harmsen. (2019). “Mobile payment report
2019,” [Online]. Available: https://www.pwc.de/de/digitale-transformation/
pwc-studie-mobile-payment-2019.pdf (visited on Oct. 8, 2020) (cit. on p. 1).

[2] Statista Inc. (2020). “Mobile POS payments - germany,” [Online]. Available: https:
//www.statista.com/outlook/331/137/mobile-pos-payments/germany (visited
on Nov. 8, 2020) (cit. on p. 1).

[3] F. Dold, “The GNU taler system: Practical and provably secure electronic payments,”
Ph.D. dissertation, University of Rennes 1, 2019 (cit. on pp. 1, 5, 7).

[4] Taler Systems SA. (2020). “GNU taler project,” [Online]. Available: https://taler.
net/en/index.html (visited on Oct. 21, 2020) (cit. on p. 5).

[5] J. Burdges, F. Dold, C. Grothoff, and M. Stanisci, “Enabling secure web payments
with GNU Taler,” in Security, Privacy, and Applied Cryptography Engineering, 6th
International Conference, SPACE2016 (Dec. 14, 2016), C. Carlet, M. A. Hasan, and
V. Saraswat, Eds., ser. Lecture Notes in Computer Science, vol. 10076, Hyderabad,
India: Springer, Cham, 2016 (cit. on pp. 5, 6, 8, 9, 44).

[6] D. Chaum, “Blind signatures for untraceable payments,” in Advances in Cryptology
Proceedings of Crypto 82, R. Rivest and A. Sherman, Eds. Plenum, 1983, pp. 199–203
(cit. on p. 6).

[7] Taler Systems SA. (2020). “Gnu taler: Design principles,” [Online]. Available: https:
//taler.net/en/principles.html (visited on Aug. 26, 2020) (cit. on p. 12).

[8] Free Software Foundation. (2020). “What is free software?” [Online]. Available:
https://www.gnu.org/philosophy/free- sw.html (visited on Nov. 8, 2020)
(cit. on p. 12).

[9] OWASP Foundation, The mobile application security verification standard, 2020 (cit. on
p. 13).

[10] PCI Security Standards Council, LLC, “Payment card industry (pci) data security
standard,” Standard 3.2.1, 2018 (cit. on p. 14).

[11] Taler Systems SA. (2020). “Gnu taler merchant pos manual,” [Online]. Available:
https://docs.taler.net/taler- merchant- pos- terminal.html (visited on
Nov. 8, 2020) (cit. on pp. 16, 43).

[12] R. Fielding, J. Gettys, J. Mogul, et al., “Hypertext transfer protocol – HTTP/1.1,” RFC
Editor, RFC 2616, Jun. 1999 (cit. on pp. 17, 35, 37, 38).

49

https://www.pwc.de/de/digitale-transformation/pwc-studie-mobile-payment-2019.pdf
https://www.pwc.de/de/digitale-transformation/pwc-studie-mobile-payment-2019.pdf
https://www.statista.com/outlook/331/137/mobile-pos-payments/germany
https://www.statista.com/outlook/331/137/mobile-pos-payments/germany
https://taler.net/en/index.html
https://taler.net/en/index.html
https://taler.net/en/principles.html
https://taler.net/en/principles.html
https://www.gnu.org/philosophy/free-sw.html
https://docs.taler.net/taler-merchant-pos-terminal.html

[13] Bluetooth SIG Inc., “Bluetooth core specification,” Specification 5.2, 2019 (cit. on
pp. 19, 27, 28).

[14] M. Zeppelzauer and A. Ringot. (2019). “Sonitalk: An open protocol for data-over-
sound communication,” [Online]. Available: https://sonitalk.fhstp.ac.at/wp-
content/uploads/documentation/draft-zeppelzauer-data-over-sound-00.
pdf (visited on Nov. 8, 2020) (cit. on pp. 19, 21).

[15] Android Open Source Project. (2020). “Bluetooth low energy overview,” [Online].
Available: https : / / developer . android . com / guide / topics / connectivity /
bluetooth-le (visited on Oct. 14, 2020) (cit. on pp. 21, 27, 29).

[16] F. Denis. (2020). “Libsodium - introduction,” [Online]. Available: https://doc.
libsodium.org/ (visited on Aug. 26, 2020) (cit. on p. 21).

[17] ——, (2020). “Libsodium - sealed boxes,” [Online]. Available: https : / / doc .
libsodium.org/public-key_cryptography/sealed_boxes (visited on Aug. 26,
2020) (cit. on p. 21).

[18] ——, (2020). “Libsodium - encrypted streams and file encryption,” [Online]. Avail-
able: https://doc.libsodium.org/secret-key_cryptography/secretstream
(visited on Aug. 26, 2020) (cit. on pp. 22, 34).

[19] Apple Inc. (2020). “Core bluetooth,” [Online]. Available: https://developer.apple.
com/documentation/corebluetooth (visited on Nov. 8, 2020) (cit. on p. 27).

[20] Bluetooth SIG Inc., “Bluetooth core specification,” Specification 5.2, 2019, p. 285
(cit. on p. 28).

[21] ——, “Bluetooth core specification,” Specification 5.2, 2019, p. 1475 (cit. on p. 28).

[22] D. Booth, H. Haas, F. McCabe, et al. (2020). “Web services architecture,” [Online].
Available: https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ (visited on
Nov. 8, 2020) (cit. on p. 37).

[23] C. Bormann and P. Hoffman, “Concise binary object representation (cbor),” RFC
Editor, RFC 7049, Oct. 2013 (cit. on p. 37).

[24] FasterXML, LLC. (2020). “Jackson core: Streaming,” [Online]. Available: https:
//github.com/FasterXML/jackson-core/wiki (visited on Nov. 8, 2020) (cit. on
p. 41).

[25] Taler Systems SA. (2020). “GNU taler merchant backend operator manual,” [Online].
Available: https://docs.taler.net/taler-merchant-manual.html (visited on
Nov. 8, 2020) (cit. on p. 43).

[26] ——, (2020). “Merchant.git,” [Online]. Available: https : / / git . taler . net /
merchant.git/tree/ (visited on Nov. 8, 2020) (cit. on p. 48).

[27] Oracle. (2020). “Java native interface specification,” [Online]. Available: https:
//docs.oracle.com/en/java/javase/14/docs/specs/jni/index.html (visited
on Nov. 8, 2020) (cit. on p. 48).

50 Bibliography

https://sonitalk.fhstp.ac.at/wp-content/uploads/documentation/draft-zeppelzauer-data-over-sound-00.pdf
https://sonitalk.fhstp.ac.at/wp-content/uploads/documentation/draft-zeppelzauer-data-over-sound-00.pdf
https://sonitalk.fhstp.ac.at/wp-content/uploads/documentation/draft-zeppelzauer-data-over-sound-00.pdf
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://doc.libsodium.org/
https://doc.libsodium.org/
https://doc.libsodium.org/public-key_cryptography/sealed_boxes
https://doc.libsodium.org/public-key_cryptography/sealed_boxes
https://doc.libsodium.org/secret-key_cryptography/secretstream
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/corebluetooth
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://github.com/FasterXML/jackson-core/wiki
https://github.com/FasterXML/jackson-core/wiki
https://docs.taler.net/taler-merchant-manual.html
https://git.taler.net/merchant.git/tree/
https://git.taler.net/merchant.git/tree/
https://docs.oracle.com/en/java/javase/14/docs/specs/jni/index.html
https://docs.oracle.com/en/java/javase/14/docs/specs/jni/index.html

List of Figures

2.1 A Taler system overview [5]. 6

2.2 An example of the Taler backend performing validation and depositing
of coins [5]. The webshop frontend delegates all coin handling to the
backend and waits for a response. 9

4.1 A comparison between the traditional Taler payment process and a
peer-to-peer approach (see chapter 2 for details on the Taler payment
process). (1) The terminal creates a contract in the backend. (2) The
terminal sends the contract terms to the wallet. (3) The wallet sends
coins to the backend. (4) The backend deposits the coins at the exchange. 15

4.2 A high-level overview of the proposed architecture, showing the inter-
relation of existing and new components. Green components are part
of this thesis’s prototype, orange parts are existing Taler components
that must be adapted, and red parts do not yet exist. 16

4.3 An overview of all layers in the P2PTalerSDK architecture, using Blue-
tooth LE as an example for the underlying wireless transport channel. . 18

5.1 An example of a non-optimal user experience for payments: Android
presents the user a list of devices to pair with when scanning for Blue-
tooth devices. 20

5.2 The ProxME discovery process. 21

5.3 The key exchange protocol scheme that establishes a secure channel
between the connector and the acceptor. 24

5.4 The QR code string definition for the ProxME discovery, as defined by
version 0000 of the protocol. 26

5.5 An overview of the interaction of the main components in the ProxME
system, using the example of the Connector class. 27

5.6 The GATT Profile structure as outlined in the Bluetooth Core Specifica-
tion [13]. 28

5.7 The transition functions of the deterministic finite-state machines that
model both sides of the connector–acceptor handshake. 31

5.8 A simplified architectural diagram, outlining the main key exchange
protocol implementation. 32

5.9 A diagram that outlines the secure channel implementation. 34

51

6.1 The HoPME framework architecture, with all framework-provided com-
ponents colored green, and the user-provided components colored yellow. 36

6.2 A simplified diagram, outlining the interaction of various classes that
provide the routing functionality. Some details were left out for clarity. 40

52 List of Figures

Declaration

I hereby declare that I have written the present thesis independently and without use
of other than the indicated means. I also declare that to the best of my knowledge
all passages taken from published and unpublished sources have been referenced.
The paper has not been submitted for evaluation to any other examining authority
nor has it been published in any form whatsoever.

Mainz, November 10, 2020

J. Florian Kimmes

54 List of Figures

	Cover
	Titlepage
	Abstract
	1 Introduction
	2 Related Work
	2.1 GNU Taler
	2.1.1 Overview
	2.1.2 Blind Signatures
	2.1.3 Taler Coins

	2.2 Conclusion

	3 Requirements Analysis
	3.1 User Stories
	3.2 Security Standards
	3.2.1 OWASP Mobile Application Security Verification Standard
	3.2.2 Payment Card Industry Data Security Standard

	4 High-Level Architecture
	5 Proximity-Based Message Exchange (ProxME)
	5.1 Discovery and Negotiation
	5.2 Secure Channel
	5.2.1 Sodium
	5.2.2 Key Exchange

	5.3 Implementation
	5.3.1 Acceptor and Connector
	5.3.2 Transport Channels: Bluetooth LE
	5.3.3 Protocol State Machine
	5.3.4 Secure Channel

	6 HTTP-over-ProxME (HoPME)
	6.1 Web Service Provider Framework
	6.2 Implementation
	6.2.1 HTTP Parser and Generator
	6.2.2 Router

	7 Evaluation
	7.1 User Experience
	7.2 Security
	7.3 Results

	8 Conclusion
	8.1 Contributions
	8.2 Future Work

	Bibliography
	Declaration

