
Penetration Test Report

Taler

V 1.0
Amsterdam, April 17th, 2025
Confidential

Document Properties

Client Taler

Title Penetration Test Report

Target Taler Wallet iOS app

Version 1.0

Pentester Abhinav Mishra

Authors Abhinav Mishra, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 April 10th, 2025 Abhinav Mishra Initial draft

0.2 April 10th, 2025 Marcus Bointon Review

0.3 April 11th, 2025 Abhinav Mishra Retest Report

1.0 April 17th, 2025 Abhinav Mishra Final Report

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 5

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 6

2 Methodology 7
2.1 Planning 7

2.2 Risk Classification 7

3 Reconnaissance and Fingerprinting 9

4 Findings 10
4.1 TW-003 — Sensitive Data Stored in Unencrypted SQLite Database 10

4.2 TW-001 — App Lacks Local Authentication Controls 12

4.3 TW-004 — Transaction Data Exposed On Error Screen for Unknown Commands 13

4.4 TW-005 — Logging URI in Debug and Production 15

5 Non-Findings 17
5.1 NF-002 — Non Finding Test Cases 17

6 Future Work 20

7 Conclusion 21

Appendix 1 Testing team 22

1 Executive Summary

1.1 Introduction

Between February 24, 2025 and March 14, 2025, Radically Open Security B.V. carried out a penetration test for Taler.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Taler Wallet iOS app

The scoped services are broken down as follows:

• Penetration test of Taler Wallet iOS app.: 4 days

• Reporting: 2 days

• Total effort: 6 days

1.3 Project objectives

ROS will perform a penetration test of the Taler Wallet iOS app with Taler in order to assess the security of the

application. To do so ROS will access the source code and the app from the iOS app store, and guide Taler in attempting

to find vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between February 24, 2025 and March 14, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Elevated, 1 Moderate and 2 Low-severity issues.

The penetration test of the iOS application revealed a few security findings, none of which were classified as critical or

high severity, indicating that the application demonstrates an acceptable baseline of security.

The key issues identified include the absence of local authentication mechanisms TW-001 (page 12), sensitive data

being stored in an unencrypted SQLite database TW-003 (page 10), transaction data inadvertently exposed on error

4 Radically Open Security B.V.

Confidential

screens for unknown commands TW-004 (page 13), and logging of URI information in both debug and production

environments TW-005 (page 15). These findings highlight opportunities for improvement, particularly in securing local

storage and enhancing error-handling practices.

It is important to note that the scope of this assessment was limited to the iOS application and did not include an

evaluation of the Wallet-core component.

1.6 Summary of Findings

ID Type Description Threat level

TW-003 Insecure Data Storage The iOS app stores sensitive details like transaction info
and all requests, in the Cache.db file created by the use
of NSURLSession in default mode.

Elevated

TW-001 Local Access Control The app lacks biometric or PIN-based access protection,
exposing sensitive financial functionality to unauthorized
access.

Moderate

TW-004 Unintentional
Information Leakage

The application displays sensitive transaction data in
plaintext when an unknown command is encountered in
the URL scheme.

Low

TW-005 Unintentional
Information Leakage

The app logs the entire URL object in both debug and
production modes

Low

1.6.1 Findings by Threat Level

50.0%

25.0%

25.0%

Elevated (1)

Moderate (1)

Low (2)

Executive Summary 5

1.6.2 Findings by Type

25.0%

25.0%

50.0%

Unintentional information leakage (2)

Insecure data storage (1)

Local access control (1)

1.7 Summary of Recommendations

ID Type Recommendation

TW-003 Insecure Data Storage • For requests involving sensitive data, it is recommended to use
NSURLSession with the .ephemeral configuration to prevent
persistent storage of cache files, such as Cache.db, on disk and
enhance security. In general, iOS apps should encrypt sensitive data
stored in SQLite databases and, where applicable, encrypt specific
fields at the application level.

TW-001 Local Access Control • Implement strong local access control mechanisms, such as biometric
authentication.

TW-004 Unintentional
Information Leakage

• Do not display error messages containing sensitive information such
as DATA or other transaction details; replace sensitive values with
generic placeholders or omit them entirely.

TW-005 Unintentional
Information Leakage

• Sanitize URLs before logging by removing or masking sensitive
components.

6 Radically Open Security B.V.

Confidential

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 7

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

8 Radically Open Security B.V.

Confidential

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – https://nmap.org

• frida – https://github.com/frida/frida

• objection – https://github.com/sensepost/objection

• SonarQube – https://github.com/SonarSource/sonarqube

• mobXplore – https://github.com/enciphers-team/mobXplore

Reconnaissance and Fingerprinting 9

https://nmap.org
https://github.com/frida/frida
https://github.com/sensepost/objection
https://github.com/SonarSource/sonarqube
https://github.com/enciphers-team/mobXplore

4 Findings

We have identified the following issues:

4.1 TW-003 — Sensitive Data Stored in Unencrypted SQLite Database

Vulnerability ID: TW-003 Status: Resolved

Vulnerability type: Insecure Data Storage

Threat level: Elevated

Description:

The iOS app stores sensitive details like transaction info and all requests, in the Cache.db file created by the use of

NSURLSession in default mode.

Technical description:

Transaction details, including user information, are stored on the device, in an unencrypted SQLite database file located

at CachesDirectory: in /var/mobile/Containers/Data/Application/[identifier]/Library/

Caches

Reading the content of Cache.db file

10 Radically Open Security B.V.

Confidential

The NSURLSession is used for app-backend communication, which by default, caches network traffic in an

unencrypted SQLite database called Cache.db.

Update :

Retest Status: As per the retest done on 11th April, 2025, the iOS app version 0.14.7 does not store the Cache.db

file.

Findings 11

Impact:

Storing sensitive data in an unencrypted format increases the risk of unauthorized access, especially in scenarios

involving jailbroken devices, or physical theft of the device. Attackers could extract and misuse sensitive transaction

information, violating user privacy and breaking regulatory compliance such as GDPR or PCI DSS.

Recommendation:

• For requests involving sensitive data, it is recommended to use NSURLSession with the .ephemeral

configuration to prevent persistent storage of cache files, such as Cache.db, on disk and enhance security. In

general, iOS apps should encrypt sensitive data stored in SQLite databases and, where applicable, encrypt

specific fields at the application level.

4.2 TW-001 — App Lacks Local Authentication Controls

Vulnerability ID: TW-001 Status: Not Retested

Vulnerability type: Local Access Control

Threat level: Moderate

Description:

The app lacks biometric or PIN-based access protection, exposing sensitive financial functionality to unauthorized

access.

Technical description:

The Taler Wallet iOS app (ver 0.14.5) does not implement any local access controls (PIN, Face ID, Touch ID) upon

opening the app or resuming from background.

12 Radically Open Security B.V.

Confidential

Impact:

Without any form of local access control, anyone with physical access to the device can open and use the wallet without

any restriction. This exposes users to financial theft, especially in the case of device loss, theft, or shared devices.

Recommendation:

Implement strong local access control mechanisms, such as:

• Biometric authentication (Face ID / Touch ID) using LocalAuthentication.framework

• A custom PIN if biometrics are unavailable or disabled.

4.3 TW-004 — Transaction Data Exposed On Error Screen for Unknown
Commands

Vulnerability ID: TW-004 Status: Resolved

Vulnerability type: Unintentional Information Leakage

Threat level: Low

Description:

The application displays sensitive transaction data in plaintext when an unknown command is encountered in the URL

scheme.

Technical description:

During the handling of talerURI, the app logs and displays an error message for unknown commands. However, the

message also includes the DATA value from the URL, which contains sensitive information related to the transaction. For

instance, the URL: taler://pay-push-fail/exchange.demo.taler.net/[DATA] results in an error message

on the app’s screen:

Findings 13

This behavior inadvertently exposes sensitive transaction information to unauthorized users who can view the error

message. An attacker with access to the screen could extract this information and misuse it.

Update :

Retest Status: As of the retest done on 11th April, 2025, the iOS app version 0.14.7 does not reveal the DATA value

on the error screen.

Impact:

Sensitive transaction data can be intercepted or viewed by unauthorized individuals. Exposed information may be used

for unauthorized access, fraud, or replay attacks. Violates data protection principles and may lead to compliance issues

with privacy regulations such as GDPR or CCPA.

Recommendation:

• Do not display error messages containing sensitive information such as DATA or other transaction details; replace

sensitive values with generic placeholders or omit them entirely.

14 Radically Open Security B.V.

Confidential

4.4 TW-005 — Logging URI in Debug and Production

Vulnerability ID: TW-005 Status: Resolved

Vulnerability type: Unintentional Information Leakage

Threat level: Low

Description:

The app logs the entire URL object in both debug and production modes

Technical description:

The function logs the entire URL object in both debug and production modes. This logging occurs in the following lines of

code: in Controller.swift:

#if DEBUG
 symLog.log(url)
#else
 self.logger.trace("openURL(\(url))")
#endif

The URL may contain sensitive information, including the DATA value. For example: taler://pay-push/

exchange.demo.taler.net/[DATA]. When logged, this data is stored in plaintext, which poses a security risk if

the logs are accessed by unauthorized individuals or shared inappropriately.

Retest Status: As per the retest done on 11th April, 2025, the iOS app version 0.14.7 only logs the scheme

("taler://") and the host ("command") of the URL in production mode.

Impact:

Logs in production environments may inadvertently store sensitive data. This data could be retrieved by attackers if logs

are accessible. Regulations like GDPR, CCPA, or HIPAA mandate secure handling of sensitive data. Logging such data

in plaintext may lead to non-compliance.

Findings 15

Recommendation:

Sanitize URLs before logging by removing or masking sensitive components. In production environments, limit logs to

high-level information (e.g., noting a URL was received) without including sensitive details.

16 Radically Open Security B.V.

Confidential

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-002 — Non Finding Test Cases

During the audit, we performed a number of test cases to evaluate the security posture of the iOS app (com.taler-

systems.talerwallet-2). Although we did not identify any critical or high-severity vulnerabilities, some test cases

revealed low or medium-severity issues, while the majority did not uncover any vulnerabilities. Below, we highlight a

selection of these non-vulnerable test cases to provide insight into the thoroughness of our assessment.

Local storage analysis
To analyze the application’s local data storage, we examined the app’s sandbox directory (/var/mobile/

Containers/Data/Application/[App-ID]) to identify stored files such as SQLite databases, .plist files, and

snapshots. We accessed the SQLite database files using a database viewer to inspect the stored content and verify

whether sensitive information like transaction details, user data, and payment information was stored in plaintext. This

resulted in discovery of the finding TW-003 (page 10):

Testing URL Schemes (talerURI)
To test the talerScheme function for security issues, we crafted various custom URLs to assess how the app

handles valid and invalid commands, ensuring proper mapping and error logging. We tested for URL scheme hijacking

by attempting to invoke the custom URL from unauthorized third-party apps. Additionally, we checked for injection

Non-Findings 17

vulnerabilities by passing malicious or unexpected inputs as query parameters or commands in the URL. We also

examined how the unencrypted flag is handled, verifying whether unencrypted URLs are logged securely, and that no

sensitive data is exposed. Lastly, we checked whether unknown or malformed URLs are handled gracefully without

crashing the app or exposing unintended behaviors. Through static analysis we discovered that the applications uses the

following URL schemes:

• taler

• taler+http

• ext+taler

• web+taler

This phase of testing revealed that the application handles the talerURI properly but the error screen for unknown

commands discloses the value of DATA from the URI. We reported this in TW-004 (page 13).

Log analysis
While testing the application, we checked whether any sensitive information is written to logs. We did not find any such

details in the logs (Using Console.app on a production build), however we noticed that the code suggests that it is

logged. A finding for this has been reported in TW-005 (page 15).

Hardcoded sensitive info
We reviewed the wallet app’s source code to identify any instances of hardcoded sensitive information (e.g. API keys),

but did not find any.

18 Radically Open Security B.V.

Confidential

Test for unnecessary permissions
We verified whether the app requests permissions that are not relevant to its functionality; it does not.

Other test cases

• We verified that user authentication is implemented securely, ensuring that authentication is enforced locally within

the app and is resistant to bypass attempts; this led to one issue in TW-001 (page 12) as no local authentication

has been implemented.

• We verified encryption of sensitive data at rest and in transit.

• To ensure the robustness of the iOS app, we performed fuzz testing on the talerURI parameters and other input

fields. Fuzz testing involved providing the app with unexpected, malformed, or excessively large data inputs to

identify vulnerabilities or crash scenarios; this did not lead to any findings.

• We checked whether the app handles unexpected user inputs or actions gracefully, and did not find any problems.

Non-Findings 19

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

20 Radically Open Security B.V.

Confidential

7 Conclusion

We discovered 1 Elevated, 1 Moderate and 2 Low-severity issues during this penetration test.

Our assessment of the iOS application reveals a relatively small attack surface, largely owing to the app’s limited

functionality. While we did not identify any critical or high-severity issues, the findings highlight areas where security

practices can be enhanced, particularly around the handling of sensitive data and local storage mechanisms.

Addressing these improvements would further bolster the app’s security posture. Overall, the application demonstrates

a foundational level of security, and the focused nature of its design contributes to reducing potential risks. It is worth

reiterating that this evaluation was confined to the iOS app and did not encompass the Wallet-core component.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 21

Appendix 1 Testing team

Abhinav Mishra Abhinav has more than 13 years of extensive experience working on web, mobile, and
infrastructure pentests. He is also known for delivering security training on web, mobile
and infrastructure hacking.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

22 Radically Open Security B.V.

