
▶ Technik und Informatik
▶ Mikro- und Medizintechnik

Bachelor’s Thesis
Real-Time GNU Taler Auditor

Course of study Bachelor of Science in Computer Science
Author Cédric Vincenz Zwahlen and Nicola Sacha Eigel
Advisor Prof. Dr. Christian Grothoff
Co-advisor Prof. Dr. Emmanuel Benoist
Expert Han van der Kleij

Version 0.1 of June 13, 2024

Abstract

One of the key components of the GNU Taler payment system is the auditor,
which is used to ensure that a payment service provider operating the payment
system is operating correctly. The primary goal, is to provide assurances against
insider threats, compromised systems or data corruption due to technical fail-
ures.

In the context of this thesis, the GNUTaler auditor was improved, and nowworks
in real-time, thus providing operators and regulators with more timely insights
into thepayment system. Thiswas achievedby changing the existing logic, which
wouldpreviously generateperiodic JSONreports, to adatabase-centric approach.
By implementing a RESTAPI service for the newly generated database tables, the
newly created single page application is able to visualize audit data in real-time
on its dashboards.

To achieve those changes, the six GNU Taler auditor helper programs, each re-
sponsible for analyzing different parts of a GNU Taler exchange, were adapted.
The existing report generating logicwas analyzed and the databasewas extended
with tables to store the various findings generated by the auditor. This replaces
the existing periodic report generating logic.

The new tables contain distinct aspects of GNU Taler that are relevant to the au-
diting process, such as failures, delays in processing, active operations, or simply
the system state with the amounts of currency in circulation or the total amount
of the various payment fees earned by the exchange. For each of the new tables,
new REST API endpoints were designed, documented and implemented.

This enabled the development of a new auditor frontend, the single page appli-
cation for displaying the data in an easy, understandable and digestable manner.
Necessary access control precautions were taken into consideration and imple-
mented.

To foster sustainable development practices, the auditors unit tests were also
adapted and changed. Due to the database-centric approach, the unit tests now
not only need tests for the main auditing logic, but also tests for the functional-
ity of the REST API. Each test case begins by running the auditor helpers, which
insert various reports into the database. After a fault injection, the tests then
query the database via the REST API and then check that the correct findings are
returned by the REST API.

ii

Acknowledgements

We want to sincerely thank Christian Grothoff and Emmanuel Benoist for the
opportunity to work on and improve GNU Taler. Their teaching, support and
trust was immensely helpful to this work and our growth.

We also want to thank the whole GNU Taler team, especially to Özgür Kesim,
FlorianDold and SebastianMarchano for their knowledge and technical support.

We also want to thank our families and friends for enduring us, their support,
time, understanding and accommodation.

Lastly, we want to acknowledge all the previous contributions to the auditor and
GNU Taler in general. Big parts of the code and the logic from the auditor and as-
sociated components were already existing and we merely extended or adjusted
it to make it real-time or fit its cause. Also, a lot of documents, texts and explana-
tions, which we used in this work.

iii

Contents

Abstract ii

Acknowledgements iii

1. Introduction 1
1.1. Motivation . 1
1.2. GNU Taler . 2
1.3. Real-Time GNU Taler Auditor . 3
1.4. Goals . 4
1.5. Scope . 4

2. Preliminaries 5
2.1. GNU Taler actors . 5

2.1.1. The Exchange . 5
2.1.2. The Wallet . 5
2.1.3. The Merchant . 5
2.1.4. The Auditor . 6

2.2. GNU Taler Architecture . 7
2.3. GNU Taler Concepts . 8

2.3.1. Coins and Denominations 8
2.3.2. Keys and Signatures . 8
2.3.3. Blind Signatures . 8
2.3.4. Wire Transfer . 9
2.3.5. Purse . 9
2.3.6. Reserves . 9
2.3.7. Revocation . 10
2.3.8. Recoup . 10
2.3.9. Dirty Coin . 10
2.3.10. Melt . 10
2.3.11. Refresh . 10
2.3.12. Reveal . 10

2.4. Auditor architecture . 11
2.5. Protocols and States . 12

2.5.1. Reserve . 12
2.5.2. Coin . 13
2.5.3. Deposit . 15

iv

Contents

2.6. Description of Helpers . 16
2.6.1. Helper Aggregation . 16
2.6.2. Helper Coins . 17
2.6.3. Helper Deposits . 19
2.6.4. Helper Wire . 19
2.6.5. Helper Purses . 20
2.6.6. Helper reserves . 21

3. Solution Design 23
3.1. Architecture . 23
3.2. Auditor database . 24
3.3. REST API . 24
3.4. SPA . 25

3.4.1. Data to Display . 26

4. Implementation 27
4.1. Overview . 27
4.2. Implementation of tables . 27

4.2.1. Overview . 27
4.2.2. Monitoring Status . 28
4.2.3. Critical Errors . 31
4.2.4. Operational Status . 32

4.3. Interfaces . 34
4.3.1. REST API . 34
4.3.2. PostgreSQL C API . 37

4.4. TRIGGERS, LISTEN and NOTIFY 37
4.5. Single Page Application . 38

4.5.1. Description . 38
4.5.2. Technologies . 38
4.5.3. Implementation . 38
4.5.4. Authentication . 39
4.5.5. Dashboards . 39

5. Discussion 41
5.1. Approach . 41
5.2. Future Work . 42

6. Conclusion 43

Bibliography 46

List of Figures 48

Glossary 49

v

Contents

A. Appendices 50
A.1. Project management . 50

A.1.1. Definition . 50
A.1.2. Methodology . 51
A.1.3. Organization . 52
A.1.4. Execution . 53
A.1.5. Completion . 54

A.2. Auditor REST API . 54
A.3. Python Scripts . 82

vi

1. Introduction

1.1. Motivation

Theworld ofmoney is in a state of change. Nations all over theworld are embrac-
ing the research anddevelopment of newkinds of payment systemsor currencies
themselves. The call for a faster transaction finality, better ease of use and the
removal of middlemen, while preserving or amplifying the security and privacy
of payment systems, is supported by the further development of the Internet and
society.

Throughout the history ofmoney, which led to this current need for change, peo-
ple tried to abuse the available payment systems to their advantage. Resulting in
disastrous losses for involved people and societies, like Bernie Madoff’s ponzi
scheme [1] or Wirecard’s “questionable” accounting practices [2]. The lack of ac-
counting and auditability is prevalent, seemingly no payment system exists that
includes a secure by design approach. The newest technology hype, cryptocur-
rencies and central bank digital currencies, often building on blockchain tech-
nology, may have found a solution for distributed digital payments. However,
these contemporary systems are inadequate to stop the next meltdown, as evi-
denced by the fact that, they are more often than not, key to enabling criminal
activities. [3] [4]

With the emerging possibility of onlinemicro payments creating potentially a 10–
1000x increase in transaction volume with virtually instant transaction finality,
security and privacy requirements for modern payment systems are higher then
ever. Our objective is to showaway to copewith those requirements and to create
a building block for the payment system of the future.

Our work focuses on the GNU Taler payment system, which differs from most
existing payment systems by its comprehensive use of digital signatures. This
work enhances the auditor system of Taler, which is designed to detect and miti-
gate operational problems to prevent financial tragedies. The auditor is an inde-
pendent component which can be attached to a Taler payment service provider
(an exchange) and then monitors Taler’s internal transactions as well as trans-
actions in the core banking systems. The goal is to verify that the exchange is
operating correctly. This provides the much needed ability to amplify the secu-
rity and auditability of a payment system to prevent fraud, insider threats and
other shortcomings.

1

1. Introduction

1.2. GNU Taler

Figure 1.1.: Logo of GNU Taler [5]

GNU Taler is a payment system that provides a way to pay digitally and anony-
mously. It is built on the following design principles:

1. Free/Libre Software

2. Protect the privacy of buyers

3. Auditability - enable the state to tax income and crack down on illegal busi-
ness activities

4. Prevent payment fraud

5. Collect the minimum information necessary

6. Be usable

7. Be efficient

8. Fault-tolerant design

9. Foster competition

Its goal is to be like cash, but digital. This means providing near instant trans-
action finality, the ability to do micro payments and it has to be easy to use. It’s
currently the only payment systemworldwide thatmanages to protect the buyers
privacy, while simultaneously enabling the state to enforce tax onmerchants and
allow for the implementation of anti money laundering (AML) logic.

GNU Taler is neither based on a blockchain, nor based on some other type of de-
centralised ledger; instead, payment services are offered by providers that use a
traditional SQL database. To provide cash-like privacy for payers, it uses a con-
cept called blind signatures [6] and advanced state-of-the-art cryptography.

2

1. Introduction

1.3. Real-Time GNU Taler Auditor

Conscientious and thorough auditing is vital for any serious payment system and
the assumption it’s useless or unnecessary is beyond naive and will inevitably
lead to disaster. Cases like the previously mentionend Wirecard fraud make it
clear that there is a real need for automated systems to verify the integrity of
payment services. This is exactly what a GNU Taler auditor does.

In fact, precisely because GNU Taler is intended to be a micro payment service
where transactions takemilliseconds to complete and is expected to handle hun-
dreds of small payments aminute, itmust provide anautomated auditor. Because
auditing such a magniture of transactions by hand to find discrepancies or pat-
terns ofmisbehaviour, would simply be impossible. And even if it was possible to
comb through all this datamanually, because the tokens are blinded, establishing
a trail between them is futile.

From the beginning, GNUTaler was designed to include auditor capabilities. The
auditor is not only designed to give peace of mind for the developers, but also for
its operators, users and regulators.

The auditor is a core component of the GNU Taler. It receives a replica of the ex-
change’s database as its primary source of truth. Additionally, the auditor must
have access to the core banking system to inspect the wire transfers of the ex-
change’s bank account, and it also receives input frommerchants.1 The auditing
logic is implemented in six helper programswhich verify that the state of the var-
ious databases is consistent. The auditor generates reports that summarize the
state of the system and detail various discrepancies, with the goal of identifying
attacks from both outsiders and insiders.

1In the future, it should also receive inputs directly from wallets.

3

1. Introduction

1.4. Goals

The goal of this work, was to adapt the auditor, so it could present its findings in
real-time.

The existing auditor logic, primarily the six helper programs, was to be extended
and to store results in a database instead of in JSON files. Thus, part of the work
involvedextending thedatabase schema. Database triggers and theLISTEN-NOTIFY
mechanism of PostgreSQL [7] would need to be added to notify helper programs
of new database records, activating the respective helper logic instantly instead
of relying on periodic jobs.

The resulting audit data should then bemade accessible via a RESTAPI, allowing
it to be queried and displayed in an easy fashion. For this, a single page applica-
tion should show inconsistencies in the exchange as they are discovered. The
data should be organized into various dashboards that are easy digestible and
user-friendly. The webpage should also allow operators to silence warnings they
have already investigated, allowing operators to keep track only of still relevant
information.

1.5. Scope

The scope of this work is as follows:

▶ Renovate the current auditors logic, its six helper programs, to store its re-
port data in a database instead of generating reports. Abideby existingGNU
Taler design and coding standards.

▶ Extending the auditors REST API logic, to provide the ability for retrieval of
parts of the auditors database. Adding a protection layer is obligatory. The
REST API design has to be well documented in the official GNU Taler docs.

▶ Creating a single page application, with some reasonable form of access
control protection, that displays the highly valued information in an easy
digestible and understandable manner. The application shall be built on
the same technology as existingGNUTaler backends for other components.

▶ Adjust the existing auditor unit tests toworkwith thenewauditors database-
centric structure.

4

2. Preliminaries

2.1. GNU Taler actors

A digital transaction always features at least two actors; the customer and mer-
chant. GNU Taler needs two more – the exchange and the wallet. Each actor has
its own set of responsibilities and capabilities. The auditor’s task is to implement
verification mechanisms, to audit each of these actors.

2.1.1. The Exchange

The Taler exchange is run by a bank – it may even be run by a central bank. Its
main function is to exchange ’regular’ currency – say swiss francs – into GNU
Taler currency, one unit of which, is called a token. A given amount of francs,
may be exchanged for an equivalent amount of GNU Taler of the same value. So,
exchanging 1 CHF, yields a token worth 1 CHF. This means, that GNU Taler is not
a separate currency, but simply an alternative way to spendmoney, that is digital
and anonymous.

2.1.2. The Wallet

Tokens received from an exchange are stored in a GNU Taler wallet, which may
be installed on phones or opened in browsers. From there, tokens may be spent
directly at merchants or be sent to other people. An exchange does not know
which tokens it has issued to whom. While this is great for privacy, it also means
that anyone in possession of GNU Taler tokens is solely responsible for keeping
them safe – a lost token may not be recovered and replaced. To spend tokens,
an internet connection is required. During peer to peer payments, while it may
seem like users can pay someone directly, tokens are actually first sent to the
exchange, and then, a newly anonymized token is passed along to the recipient.

2.1.3. The Merchant

Tokens may be spent at any merchant that accepts them. A merchant can then
contact an exchange, to redeem any tokens it received and have their equiva-
lent value be deposited in their bank account. This system ensures, that a payers

5

2. Preliminaries

identity remains anonymous, while merchants must disclose themselves to an
exchange to receive money. This important for tax purposes.

2.1.4. The Auditor

While the auditor is an important part of GNU Taler, it does not issue, redeem
or receive currency. Instead, it constantly monitors an exchange’s database, and
verifies its soundness. Anexchange verifies tokens it receives andvetsmerchants,
and auditors make sure an exchange acts as expected. A compromised exchange
could generate huge losses for its operators, which makes auditors that may de-
tect discrepancies early, essential to GNU Taler’s security.

The auditor’s role is to find misbehaviors or fraud attempts and monitoring the
systems status. Those can be technological problems like network failures or
system downtimes or things like database manipulation or other issues.

GNU Taler is also equipped to deal with insider threats. Ideally, several instances
of the GNU Taler auditor auditing the same exchange are run simultaneously,
in different physical locations, by different organizations. This way, even if one
auditor is manipulated, others can still operate correctly.

6

2. Preliminaries

2.2. GNU Taler Architecture

To understand the auditor and the exchange, one needs to understand Taler’s
payment flow, its concepts and the structure.

Figure 2.1.: Overview of the taler architecture [8]

The figure 2.1. shows an overview of Taler’s architecture and the payment flow;
which works as follows:

1. The customer sets up a wire transfer through its bank of choice.

2. The bank operating the exchange receives the wire transfer.

3. The operating bank then creates the tokenized coins, in the amount of the
received value of the wire transfer. Those coins are blinded using a blind
signature (see chapter 2.3.3.),meaning, the exchangedoesnot know (!), who
redeems these coins.

4. The customer redeems those coins through his wallet anonymously.

5. The customer spends his coins by buying something or sending money to
another party.

7

2. Preliminaries

6. As soon as the merchant wants to redeem the money to have it in his bank
account, he deposits his coins to the exchange. He does this in bulk, mean-
ing, a whole stack of coins out of transactions.

7. The exchange passes received coin deposits to the operating bank.

8. The exchange operating bank sends a wire transfer to themerchant’s bank.

9. The merchant receives the money.

2.3. GNU Taler Concepts

There are some unique problems a digital payment system needs to master. The
concepts,methods and systems that solve themand lay the essential groundwork
for the GNU Taler payment protocol are elaborated in this chapter.

Important concepts needed to understand the auditor, are:

2.3.1. Coins and Denominations

There may be a product on sale for 42 swiss francs. To buy it, a wallet needs to
have coins in the value of at least that amount plus the transaction fees. Say the
wallet has ten coins with a value of 5, it would pay with 9 out of those ten coins, to
a total of 45 swiss francs. Say the merchant wallet now only has coins with value
of 5 swiss francs as well, it could not return change properly. That’s were denom-
inations come into play. Coin denominations represent values of a coin, say 50
centimes. The payment can be concluded by paying with coin denominations.

2.3.2. Keys and Signatures

Taler uses cryptography to ensure it can hold what it promises. One crypto-
graphic system used throughout is public-key cryptography [9]. This system uses
pairs of keys called public and private keys. Such key pairs are used whenever
two actor communicate with each other via the internet.

2.3.3. Blind Signatures

Another cryptographic system, absolutely essential to GNU Taler, are blind sig-
natures [10]. Their goal is to provide unlinkability and anonymity to coins, and
thus making it impossible for the exchange to identify the customer redeeming
them. Blind signatures can be understood as an extension of public-key cryptog-
raphy. It functions like a ballot that has been put into an envelope. The envelope
then gets signed by the authority, but the authority does not know what is inside

8

2. Preliminaries

the envelope. Similarly, the exchange does not knowwhom it issues the coins to,
but knows they are valid because it signed them.

2.3.4. Wire Transfer

A wire transfer is simply a money transfer between a bank and its exchange. A
wire transfer is accompanied by a transfer fee.

2.3.5. Purse

A purse is used in a peer to peer transaction. The payer can put their coins into
the purse, which expects a previously determined sum of money, and the payee
may redeem the coins in the purse once the payer put the required amount into
it. A purse is managed by the exchange. [11]

A purse can expire, either because the payer fails to fill it with enough coins or
because the payee does not claim their money.

2.3.6. Reserves

When the customer pays the exchange’s operating bank to receive some GNU
Taler, the exchange opens up a reserve. The customer can then withdraw his
money from the newly created reserve into his wallet. If a reserve is not emptied,
the exchange will eventually close it.

9

2. Preliminaries

2.3.7. Revocation

A revocation in the context of a signature means, that a signature is declared
invalid. If the signature is still used to sign something, the validation will fail,
because a signature validation process includes querying a signature’s revocation
status.

2.3.8. Recoup

Operations by which an exchange returns the value of coins to their owner, be-
cause their signature is no longer valid. Either, the exchange allows the coin’s
owners to withdraw new coins with a valid signature, or it wires funds back to
the bank account of the coin owner.

2.3.9. Dirty Coin

A coin is dirty if its public keymay be known to an entity other than the customer,
thereby creating a situation, in which some entity might be able to link multiple
transactions of coin’s owner if the coin is not refreshed.

2.3.10. Melt

Melting is a step of the refresh protocol. It includes invalidating a dirty coin to
then be renewed in a subsequent reveal step.

2.3.11. Refresh

Operation by which a dirty coin is converted into one or more fresh coins. In-
volves melting the dirty coins and then revealing so-called transfer keys.

2.3.12. Reveal

Astep in the refresh protocolwhere someof the transfer private keys are revealed
to prove honest behavior on the part of the wallet. In the reveal step, the ex-
change returns the signed, fresh coins.

10

2. Preliminaries

2.4. Auditor architecture

The exchange stores a lot of information to function properly. Including bal-
ances, wire transfers, completed transactions, as well as such still in flight.

However, the exchange is not the auditor’s only source of information, it also re-
ceives data from themerchant and thebanking system interface softwareLibEuFin. [12]
It’s these different sources of information, that makes this auditor so powerful.

Figure 2.2.: Old Auditor architecture simplified

Previously, the auditor ran alongside the exchange, where it was configured to
run as a periodic running task (cronjob). The helpers then recorded all discrep-
ancies as theywere found, and generated JSON report files before shutting down.
This is not ideal, because the results of an audit can only be seen after the fact.
Also, an auditor may run for a long time, so any results that are found may accu-
mulate over a long period of time – without being seen.

This not onlymakes it more difficult tomitigate the cause of the problems found,
but might also be overwhelming for any person that would have to review these
audits.

11

2. Preliminaries

2.5. Protocols and States

In this chapter, select protocols of GNU Taler are explained. They give an idea of
some of the exchange’s processes. Understanding these concepts somewhat will
be useful for further chapters.

2.5.1. Reserve

Figure 2.3.: Overview of states and state changes of the reserve [13]

Auser obtainsGNUTaler, by asking his bank towire somemoney to an exchange.
This initiates a wire transfer from the bank to the exchange. The exchange then
creates a reserve, filled with coins worth the same as the money payed to the
bank, minus fees. The user is given the private keys to the reserve, and can with-
draw those coins. This drains the reserve and leads to the "drained reserve" state,
once all funds are withdrawn. The reserve itself closes after a certain time, even
if it is not fully drained. A recoup operation is then possible, which will lead to a
filled reserve state again.

12

2. Preliminaries

2.5.2. Coin

Figure 2.4.: Overview of states and state changes of coins [13]

13

2. Preliminaries

The lifecycle of a coin starts with a planchet, which is created by a wallet if it
wants towithdraw funds from theexchange. Theexchange then signs theplanchet,
creating a fresh coin.

Once a coin is created several thingsmayhappen to it. It can, for example, expire,
if it is not used within a certain time period. It may be refreshed by an exchange.

A coin, or rather its signature, may be revoked. The customer has the ability to
recoup this coin and get a zombie coin, which can then be melted. If such a coin
is spent, it can also be melted directly.

Finally a coin can be spent. By depositing it, it becomes a dirty or a spent coin.
The coin is considered dirty if the public key is shared in some way, and spent if
it is not.

Lastly, a spent coin can, through the refund protocol, become a dirty coin or a
wired coin. Which like the expired coin state, is one of the two possible end states
for a coin and this means it’s life cycle is complete.

14

2. Preliminaries

2.5.3. Deposit

Figure 2.5.: Overview of states and state changes of deposits [13]

The depositing process is initiated with a payment. As soon as this process com-
pletes, a deposit is successful. In the ’ready’ and ’due’ state, it can aggregate and
thus reach the ’tiny’, ’done’ or ’pending transfer’ state. Once the transfer is fin-
ished, the deposit is complete.

A not yet completed deposit may also go through the refund process, which may
or may not be successful, or reach the ’deposit done’ state.

15

2. Preliminaries

2.6. Description of Helpers

Thework of the auditor takes places in its six helper programs, namely the helper
deposits, coins, aggregation, wire, purse and reserves. Each helper has its own
responsibilities and tests it performs, to find potential manipulation or misbe-
haviour.

Each helper roughly perform the same steps. First, they check their current au-
diting progress, as to not do the same work twice. Then tests are performed, and
lastly auditing results are stored and their progress is updated. The helpers also
piece together their own version of some of the exchanges database, like the ex-
changes current balances, reserves and so on, these are also updated as tests are
being performed.

2.6.1. Helper Aggregation

The helper aggregation audits the exchanges aggregation activity. It includes the
following test cases:

Check that a wire transfer made by the exchange is valid

This test first checks if a wire transfer has a transfer method, then compares the
payto method with the payto URI. If they don’t match, the auditor reports a ’row
inconsistency’. Afterwards the auditor tries to find details, the denomination key
and history for said coin claimed in the aggregation. If it cant find them, a ’row
inconsistency’ is reported here as well. The test goes on to lookup the technical
details of the coin, trying to find wrong denomination keys, expired coins or bad
signatures, which will result in a ’bad-sig-losses’ report.

If it finds an invalid coin denomination signature, it will report a ’row inconsis-
tency’ again. Afterwards, it compares the coin and its paid fee, with the actual
deposit fee, to find and report a ’amount arithmetic inconsistency’ if they do not
match.

Then, the helper checks other details of the wire transfer, like comparing the
outgoingwire transfer targetwith the hash of thewire from the deposit while also
comparing given wire transfer dates. If dates do not match a ’row inconsistency’
is reported. The last check does a comparison of the given and the calculated
amounts, which in turn can lead to a ’wire out inconsistency’, if they differ.

Lookup the wire fee that the exchange charges at a timestamp

To validate wire fees, they are looked up in the exchange, if this is not possible for
some reason, this leads to a ’row inconsistency’ report. If an invalid or negative

16

2. Preliminaries

fee is reported back after subtracting the fee from the sum of all transactions by
the given wire transfer id, an ’amount arithmetic inconsistency’ report is gener-
ated.

Then, signatures of a wire fee at a given time are checked, if any of them fail,
a ’row inconsistency’ is reported. Next, the helper compares the given fee start
and end dates, which can result in a ’fee time inconsistency’ report if they dont
make sense. This can happen if either the start date is earlier than the previous
end date, or the end date is later than the next start date.

Check coin transaction history for plausibility

To check the coin transaction history, this test iterates over all given transactions
and then computes the deposit and melt values, as well as the refund values.

A ’row inconsistency’ is reported, when multiple instances of the same coin are
detected in the same deposit. An ’amount arithmetic inconsistency’ is reported if
there is a disagreement in the given fee structure and the computed one, either
in the deposit, melt or refund values.

This test also checks if the difference between refund values and deposit values
is zero, if it is not, this leads to a ’coin arithmetic inconsistency’. Following up on
these calculations of total balances, the last checks are a comparison of refunds
and expenditures. A ’coin arithmetic inconsistency’ is reported in case they don’t
match.

2.6.2. Helper Coins

This helper checks for all coin use cases. Signatures, denominations, blind sig-
nature tests etc.

Check withdrawal operations

This check examines, whether the coin’s denomination key is missing. A ’row
inconsistency’ is reported if so.

Audit refund’s execution

It inspects if the denomination key is missing, a ’row inconsistency’ is reported
if so. Then, the refund signature is verified, which may lead to a ’bad sig loss’
report. An ’amount arithmetic inconsistency’ is reported, if the amount without
fee, subtractedwith the amountwith fee, does not correlatewith the given refund
fee. Further, if the denomination key for the refunded key is not known to the
auditor, a ’row inconsistency’ is reported.

17

2. Preliminaries

Audit purse refund’s execution

If the denomination key is missing, a ’row inconsistency’ is reported. If it is un-
known to the auditor, a ’row inconsistency’ is reported.

Audit about recoups of refreshed coins

Is the denomination key of the old coinmissing, a ’row inconsistency’ is reported.
After this, the coin’s signature is verified, if the verification fails, it leads to ’bad
sig loss’ report. Then the recoup signature is verified, potentially resulting in a
’row inconsistency’ report. If a coin is invalid – meaning the denomination key
either doesn’t exist, is expired or the signature is incorrect – a ’bad sig loss’ is
reported. Next, if the denomination key for recouped coin is unknown to auditor,
’row incosistency’ is reported. The last check tests if there was a revocation of a
signature that was not forwarded to the denomination, this would then lead to a
’bad sig loss’ report.

Check the refresh execution

It starts with trying to find the denomination key, is it missing, it generates a ’row
inconsistency’. Is the melting signature incorrect, a ’bad sig loss’ is reported.

If the melting fee is higher than the contribution of the melted coin, an ’amount
arithmetic inconsistency’ is reported. If the refresh cost was higher than the
amount without fee and the exchange made a loss, another ’amount arithmetic
inconsistency’ is reported. Next, the test checks again if the denomination key
for the fresh coin is unknown to auditor, or the denomination of the dirty coin is
unknown to it; a ’row inconsistency’ report is generated.

Audit deposit execution

The test attempts to find the denomination key, whichmay result in a ’row incon-
sistency’ report if it doesn’t. The same report will also be generated, if the refund
deadline is past the wire deadline. A ’bad sig loss’ is reported when the deposit
signature is invalid.

Audit purse deposit execution

Again, the check for the denomination key runs first and the signature check
second. If the denomination key for a purse-deposited coin is unknown to the
auditor after updating the denomination balance, a ’row inconsistency’ report is
generated.

18

2. Preliminaries

Check the coin and its history

First the coin’s history is calculated. Then, in case we detected a loss for the coin,
an ’amount arithmetic inconsistency’ report is generated.

2.6.3. Helper Deposits

The helper deposit is the simplest of all helper programs. It has one test case
only:

Check that the deposit confirmation exists in the exchanges database

This test queries the deposit confirmations that were provided to it bymerchants
and checks that for each coin used in that deposit, it canfind the same transaction
in the exchanges database. If there is one missing, it leads to a reported ’deposit
confirmation inconsistency’.

2.6.4. Helper Wire

The helper wire audits the reserve’s closing operations triggered by the aggrega-
tor. Those run through some tests, while the helper gets its data not only from the
replicated exchange database, it also gets the data from the bank API. It goes over
all bank accounts and checks for deltas and other indicators. As the helper wire
is structured a bit differently than the other helpers, it’s more understandable to
display it’s tests in a list:

▶ A ’closure lag’ is detected and reported, if there were any entries found in
reserves closures, that were not yet observed.

▶ A ’KYC lag’ is reported, if there is a kyc entry in thewire transfers that should
have been performed.

▶ An ’AML lag’ is reported, if there is an aml entry in the wire transfers that
should have been performed.

▶ A ’lag’ is reported, if a lag is detected in the wire transfer.

▶ A ’row minor inconsistency’ is reported, if any kind of timing anomalies
were detected.

▶ A ’wire out inconsistency’ is reported, if any outgoing wire transfer was not
yet made, but could or should have been.

▶ A ’wire out inconsistency’ is reported, when there is a receiver accountmis-
match found on both sides.

▶ A ’wire out inconsistency’ is reported,when thewire amounts donotmatch.

19

2. Preliminaries

▶ A ’row inconsistency’ is reported, if therewas a profit drain found. Meaning
a wire transfer happened, that was not allowed to, because a signature was
missing or invalid.

▶ A ’wire out inconsistency’ is reported, if a transfer was found with a delta
in target accounts.

▶ A ’wire out inconsistency’ is reported, if a profit drain with an incorrect
amount was found.

▶ A ’wire out inconsistency’ is reported, if the jurisdication of a wire transfer
was not found.

▶ A ’wire format inconsistency’ is reported, if there was a format error of a
wire transfer.

▶ A ’row inconsistency’ is reported, if a duplicated wire offset was found.

▶ A ’reserve in inconsistency’ is reported, when an incoming wire transfer
claimed by the exchange was not found.

▶ A ’reserve in inconsistency’ is reported, if there is a delta in wire transfer
subjects, on both sides.

▶ A ’reserve in inconsistency’ is reported, if there is a delta in thewire amount.

▶ A ’misattribution in inconsistency’ is reported, if therewas amisattribution
found.

▶ A ’row minor inconsistency’ is reported, when the execution dates do not
match.

▶ A ’rowminor inconsistency’ is reported, if the given closing fee is above the
total amount.

2.6.5. Helper Purses

In this helper, purses are checked.

Handling of a purse’s requests

Verifyies a purses the signatures. If they are invalid, a ’bad signature loss’ report
is generated.

Audit a purse’s merge execution

Tries to verify eachpursemerge by recomputing it and comparing the signatures.
If they are invalid, a ’bad signature loss’ report is generated. Finally, the auditor

20

2. Preliminaries

tries to create a new reserve for the given reserve public key. If it fails, it reports
a ’row inconsistency’.

Audit an account’s merge execution

Audits account merges and tries to verify its signatures and on failing, a ’bad sig-
nature loss’ report is generated.

Audit a purse’s decision

With all purse refunds loaded from the database, the test first tries to setup the
purse, possibly resulting in a ’row inconsistency’ report. Then, the purse fee for
the purse created at the given time will be queried, to check if the fee is available
or not, which if not, results in a ’row inconsistency’ report. If the fee is available
but higher than the balance, another ’row inconsistency’ is reported. The last two
checks compare the values of a purse, either the refund or the merge values, if
they don’t match, this results in an ’amount arithmetic inconsistency’.

Audit expired purses

An expired purse, that was not closed, immediately leads to a ’purse not closed
inconsistency’ report.

Purse balance summary check

Finally the last purse check does an iteration over all purses and checks if it can
query their respecitve fees and if not, this results in a ’row inconsistency’. It goes
on to subtract the fee from the balance to get the actual balance it expects and
tests, if the purse fee is higher than the given balance. If so, a ’row inconsistency’
report is stored. The last check compares the purse’s exchange balance amount
with the balance amount givenwithout the fee, if they don’tmatch up, an ’amount
arithmetic inconsistency’ is reported.

2.6.6. Helper reserves

The helper reserves audits reserves for being well-formed.

21

2. Preliminaries

Audit withdrawals

The test starts by checking for the denomination key, if it is not found, a ’row in-
consistency’ is reported. It goes on to check the execution date of a withdrawal,
if it is not within the allowed range, it leads to a ’denomination key validity with-
draw inconsistency’.

Audit recoup operations by reserve

First, the coin’s signature is verified, looking for a ’bad sig loss’. Second, a ’row
inconsistency’ is reported if the revocation set doesnot include the denomination
key. Third, another ’bad sig loss’ is reported, if the master signature is invalid.

Test reserve opening operations

If the reserves operation specific signature is invalid, a ’bad sig loss’ is reported.

Test reserve closing operations

The fee of the reserve closing operation is checked for deltas in given and ex-
pected values, potentially resulting in an ’amount arithmetic inconsistency’ re-
port. While the reserve closing request is unknown to the auditor, a ’row incon-
sistency’ is reported. Another ’bad sig loss’ is reported, if the signature of the
closing request is invalid. Lastly, the test reports ’row inconsistencies’ for the fol-
lowing cases: the target account is not verified and auditor does not know the
reserve, or the target account does not match its origin account in sender and
receiver.

Checks account merge requests

It checks the reserve’s signature, which leads to a ’bad sig loss’ if the verification
fails.

Verify reserve balances

A ’reserve balance insufficient inconsistency’ is reported, in case of given bal-
ances not matching, either in negative or positive.

A ’reserve balance summary wrong inconsistency’ is noticed and reported, if the
computed and given amounts do not match.

A ’reserve not closed inconsistency’ is found and reported, when either the re-
maining reserve balance exceeds the closing fee, or the closing fee could not be
determined.

22

3. Solution Design

3.1. Architecture

A lot of changes to the existing auditor architecture were necessary, since the
auditor should now write into a database instead of JSON files.

Figure 3.1.: New Auditor architecture

23

3. Solution Design

The new architecture is dictated by the exchange’s database. The new program
flow is to be understood like this:

1. On an insert into the exchange database, the helpers get triggered to do
their work

2. After auditing, they write back their findings to the auditor database

3. Through the API, the SPA reads from the database constantly and presents
the auditors findings in it’s dashboard

Every database, API and SPA access is protected by a bearer token. This provides
basic security, enough that the data is protected inside the operater’s network.
The idea is, that the auditor is run behind a reverse proxy anyway, which means,
that the access control is managed at this front and not needed at the auditor’s
side.

3.2. Auditor database

The auditor’s database schema is based on the current behaviour of the helpers.
Theygenerated JSONreportswithdifferent sections, these sections arenowdatabase
tables. The attributes of the tables reflect the data in the code.

For the database table’s insert triggers and the required event subscription in the
code, we followed the official PostgreSQL documentation and used the existing
GNUnet event subscription code base.

3.3. REST API

The procedure in designing was clear. First, start by documenting the needed
endpoints and afterwards, extend the auditor’s webserver codebase and at last,
update and extend the REST API. The needed endpoints were based on the in-
cident categories. Only for incidents and balances, a PATCH operation was pro-
vided. A bearer token for security will be added, for those requests that are not
designed to be publicly accessible. The format and responses from endpoints
were designed to adapt to existing GNU Taler APIs.

24

3. Solution Design

3.4. SPA

Since GNU Taler has different components with SPA’s already, the idea was to
align the codebase and technologies, as well as it’s design, to improve maintain-
ability and recognition. So it’s code was partially taken from the GNU Taler mer-
chant [14] and adjusted to the auditor’s needs.

Figure 3.2.: Merchant SPA

Themain pointwas not the design, but the data to be presented. While the design
stayed the same,with thenavigation on the left, theheader on top and the content
in themiddle, aswell with the same looks, the real taskwas to connect that design
with the auditor’s data and present it in the best possible way, for the data to be
understood.

25

3. Solution Design

3.4.1. Data to Display

Data is divided into four categories, each representing a dashboard that is navi-
gatable like in figure 3.2.

The four dashboards are:

1. Key figures, for the management and analysts, interested in tracking the
exchanges gains and losses

2. Critical incidents, where business impacting incidents are shown, tracked
and investigated.

3. Monitoring, exploring the protocol and network state finding difficulties
and operating problems

4. Detail state, to go in depth

26

4. Implementation

4.1. Overview

The real-time auditor stores results of it’s audits in PostgreSQL tables, every in-
consistency that the auditor looks for, has a designated table. These, along with
any other databases are set up when the auditor is started. Helpers are written
in C, and thus communicate with the PostgreSQL database via an interface based
on the libpq C library. All Helpers, except the deposit helper, only add or update
elements in the database or get them from it. The deposit helper can also delete
elements from it’s tables.

To see results of the real-time auditor, a webpage continuously fetches elements
form the auditor database. A small microhttp server handles requests to the
database.

Requests from the web are only allowed to GET elements or PATCH a specific
field that indicates whether an element should be sent again on subsequent GET
requests or not.

4.2. Implementation of tables

4.2.1. Overview

There are more than 20 tables the GNU Taler auditor writes to. That does, how-
ever, not equate the number of issues the auditor actually tracks.

The different tables do give an idea of what errors are recognized, but there are
also someminor issues that are not seperately categorized, and instead collected
in general tables. Other tables store no errors at all, but instead contain infor-
mation about the internal state of the auditor itself. And lastly, some contain
records about balances or reserves etc, which the auditor then compares to the
exchange’s records.

As a result of this, it is important to recognize that, when the auditor adds a new
row to one of it’s tables, it does not automatically mean some crime has been
committed, or fraud has taken place. This is why any critical developments are
surfaced in a single page application, for a human to review.

27

4. Implementation

In the following chapters, an overview and the structure is given over the newly
created tables the auditor writes to and what an entry in each of themmeans.

Some of the descriptions have been taken from the exchange’s documentation it-
self, while others have beenprovided or extended by Prof. Dr. ChristianGrothoff.
These descriptions are also available seperately in the documentation of theGNU
Taler auditor REST API.

4.2.2. Monitoring Status

Arithmetic Inconsistencies

This table contains caseswhere the arithmetic of the exchange involving amounts
disagrees with the arithmetic of the auditor. Disagreements imply that either the
exchangemade a loss (sending out toomuchmoney), or screwed a customer (and
thus at least needs to fix the financial damage done to the customer). The prof-
itable column is set to true if the arithmetic problem was be determined to be
profitable for the exchange, false if the problem resulted in a net loss for the ex-
change.

Losses Caused by Invalid Signatures

This table contains operations that the exchange performed, but for which the
signatures provided are invalid. Hence the operations are invalid and the amount
involved could be a loss for the exchange (as the involved parties could success-
fully dispute the resulting transactions).

Closure Lags

A closure lag happens if a reserve should have closed a reserve and wired (re-
maining) funds back to the originating account, but did not do so on time. Sig-
nificant lag may be indicative of fraud, while moderate lag is indicative that the
systems may be too slow to handle the load. Small amounts of lag can occur in
normal operation.

If closure lag is experienced, the administrator should check that the taler-exchange-
closer component is operating correctly.

Coin Inconsistencies

This table contains caseswhere the exchangemadearithmetic errors foundwhen
looking at the transaction history of a coin. The totals sum up the differences in

28

4. Implementation

amounts that matter for profit/loss calculations of the exchange. When an ex-
change merely shifted money from customers to merchants (or vice versa) with-
out any effects on its own balance, those entries are excluded from the total.

Denomination Key Validity Withdrawal Inconsistencies

This table highlights cases, where denomination keys were used to sign coins
withdrawn from a reserve before the denomination was valid or after it was al-
ready expired for signing. This doesn’t exactly imply any financial loss for any-
one, it is mostly weird and may have affected the fees the customer paid.

Denominations Without Signatures

This table highlights denomination keys that lack a proper signature from the
taler-auditor-offline tool. This may be legitimate, say in case where the auditor’s
involvement in the exchange business is ending and a new auditor is responsible
for future denominations. So this must be read with a keen eye on the business
situation.

Deposit Confirmations

This table contains a list of deposits confirmations that an exchange provided to
merchants but failed to store in its own database. This is indicative of potential
fraud by the exchange operator, as the exchange should only issue deposit confir-
mations after storing the respective deposit records in its database. Not storing
the deposit datameans that the exchangewould not pay themerchant (pocketing
themoney) or allow the customer to double-spend themoney (which is naturally
also not good).

Note that entries could appear in this list also because the exchange database
replication is delayed. Hence, entries that are only a few seconds old might not
be indicative of an actual problem. If entries in this list are more than a few
seconds old, the first thing to check is whether or not the database replication
from the exchange is working properly.

Incoming Misattributions Inconsistencies

This table contains cases where the sender account record of an incoming wire
transfer differs between the exchange and the bank. This may cause funds to be
sent to thewrong account should the reserve be closedwith a remaining balance,
as that balance would be credited to the original account.

29

4. Implementation

Purse not Closed Inconsistencies

This table highlights cases, in which either payer or payee did not finish their
part of a P2P payment. This caused a purse –– which may contain some money
— to reach its expiration date. However, the exchange failed to properly expire
the purse, which means the payer did not get their money back. The cause is
usually that the taler-exchange-expire helper is not running properly.

Refreshes Hanging

This table highlights cases, where a coin was melted but the reveal process was
not finished by the wallet. Usually, a wallet will do both requests in rapid suc-
cession to refresh a coin. This might happen, even if the exchange is operating
correctly, if a wallet goes offline after melting. However, after some time wallets
should in most cases come back online and finish the operation. If many opera-
tions are hanging, this might be indicative of a bug (exchange failing on reveal,
or wallets not implementing refresh correctly).

Reserve Balance Insufficient Inconsistencies

This tablehighlights caseswheremore coinswerewithdrawn froma reserve than
the reserve contained funding for. This is a serious compromise resulting in pro-
portional financial losses to the exchange.

Reserve Balance Summary Wrong Inconsistencies

This table highlights cases, where the exchange’s and auditors’ expectation of the
amount of money in a reserve differs.

Reserve in Inconsistencies

This table contains caseswhere the exchange’s andauditor’s expectationof amounts
transferred into a reserve differs. Basically, the exchange database states that a
certain reserve was credited for a certain amount via a wire transfer, but the au-
ditor disagrees about this basic fact. This may result in either a customer loosing
funds (by being issued less digital cash than they should be) or the exchange loos-
ing funds (by issuing a customer more digital cash than they should be).

Reserve not Closed Inconsistencies

This table highlights cases, in which reserves were not closed, despite being ex-
pired. As a result, customers that wired funds to the exchange and then failed to

30

4. Implementation

withdraw them are not getting their money back. The cause is usually that the
taler-exchange-closer process is not running properly.

Row Inconsistencies

This table highlights inconsistencies in a specific row of a specific table of the
exchange. Row inconsistencies are reported from different sources, and largely
point to some kind of data corruption (or bug). Nothing is implied about the seri-
ousness of the inconsistency. Most inconsistencies are detected if some signature
fails to validate. The affected table is noted in the ’table’ field. A description of
the nature of the inconsistency is noted in ’diagnostic’.

Minor Row Inconsistencies

The section highlights inconsistencies where a row in an exchange table has a
value that is does not satisfy expectations (such as amalformed signature). These
are cause for concern, but not necessarily point to a monetary loss (yet).

Wire Format Inconsistencies

This table highlights cases where the wire transfer subject was used more than
once and is thus not unique. This indicates a problemwith the bank’s implemen-
tation of the revenue API, as the bank is supposed to warrant uniqueness of wire
transfer subjects exposed via the revenueAPI (andbouncenon-unique transfers).

Wire Out Inconsistencies

This table highlights cases where the exchangewired a different amount to a des-
timation account than the auditor expected.

4.2.3. Critical Errors

Emergencies

Emergencies are errors where the total value of coins deposited (of a particu-
lar denomination) exceeds the total value that the exchange remembers issu-
ing. This usuallymeans that the private keys of the exchange were compromised
(stolen or factored) and subsequently used to sign coins off the books. If this hap-
pens, all coins of the respective denomination that the exchange has redeemed
so far may have been created by the attacker, and the exchange would have to
refund all of the outstanding coins from ordinary users. Thus, the risk exposure
is the amount of coins in circulation for a particular denomination and the max-
imum loss for the exchange from this type of compromise.

31

4. Implementation

The difference between emergencies and emergencies by count is how the audi-
tor detected theproblem: by comparing amounts, or by counting coins. Theroret-
ically, counting coins should always detect an issue first, but given the impor-
tance of emergencies, the auditor checks both total amounts and total numbers
of coins (they may differ as coins may be partially deposited).

Emergencies By Count

Emergencies "by count" are caseswhere this type ofmoney printingwas detected
simply by counting the number of coins the exchange officially put into circula-
tion and comparing it to the number of coins that were redeemed. If the number
of redeemed coins is higher than the number of issued coins, the auditor reports
an emergency-by-count.

Fee Time Inconsistencies

This table highlights cases where validity periods associated with wire fees the
exchangemay chargemerchants are invalid. This usuallymeans that the validity
periods given for the same type of fee are overlapping and it is thus unclearwhich
fee really applies. This is a sign of a serious misconfiguration or data corruption
as usually the exchange logic should prevent such a fee configuration from being
accepted.

4.2.4. Operational Status

Balances

Returns the various balances the auditor tracks for the exchange, such as coins
in circulation, fees earned, losses experienced, etc.

Historic Denomination Revenue

This endpoint is used to obtain a list of historic denomination revenue, that is the
profits and losses an exchange hasmade fromcoins of a particular denomination
where the denomination is past its (deposit) expiration and thus all values are
final.

Historic Reserve Summary

This endpoint highlights cases, where the exchanges expectation of the summary
in a reserve differs from its actual summary.

32

4. Implementation

Progress

This endpoint contains information about the auditing progress an auditor has
made.

Reserves

This endpoint is used to obtain a list of reserves.

Purses

This endpoint is used to obtain information about open purses.

Pending Denominations

This endpoint is used to obtain a list of balances for denominations that are still
active, that is coins may still be deposited (or possibly even withdrawn) and thus
the amounts given are not final.

33

4. Implementation

4.3. Interfaces

The old auditorwould store findings inmemory, until it saved them to a JSONfile,
whereas the real-time version saves any findings in dedicated PostgreSQL tables
as soon as they are discovered. Then, the contents of the tables are displayed in
a webportal, that continuously updates.

The connection between the tables, the auditor and the webportal is facilitated
through two key interfaces; A REST API and a PostgreSQL C API.

A REST API allows the webportal to request table entries in JSON format from
the auditor, so that it can then display them. The webserver that receives those
requests must fetch elements from a database, and it does so with a PostgreSQL
C API.

Figure 4.1.: Interaction Between Auditor Components

4.3.1. REST API

Only GET and PATCH functionality is strictly required by the webportal, which is
described in more detail in chapter 4.5. For testing purposes, PUT and DELETE
functions were also added, and subsequently disabled.

34

4. Implementation

GET

All GET requests added as part of this project have the same structure. As an ex-
ample, with the endpoint http://localhost:8083/monitoring/emergency (provided
the auditor runs on the local machine of course) one receives at most 20 items,
starting with the newest, from the emergency table. The same logic applies to all
other inconsistencies – or tables – the auditor records.

Three query arguments, can be used to customize a response:

limit A signed integer. Specifies howmany elements should be returned, relative
to the offset argument. The default is -20.

offset An unsigned integer. Specifies from which row onwards to return ele-
ments. The default is INT_MAX, meaning the latest element.

return_suppressed A boolean. If true, then all elements are returned, regard-
less of whether or not they were suppressed. The default is false.

Figure 4.2. demonstrates how the parameters limit and offset can be used to-
gether to retrieve any contiguous number of rows. In the example, the offset
is 40. If limit is chosen to be a negative number, like -20, the rows with row_ids
20 to 40 would be returned. A positive limit of ten would return rows 40 to 50.

Figure 4.2.: Using offset and limit query arguments

35

http://localhost:8083/monitoring/emergency

4. Implementation

The ’bad-sig-losses’ table required some additional customisation. Two the addi-
tional query arguments ’op’ of type string and ’use_op_spec_pub’ of type boolean
were added to the GET request. If ’use_op_spec_pub’ is sent as an argument, then
anoperation specificpublic key encodedwithCrockford’s versionofBase32Crock-
ford Base32 must be given in the requests’ body.

With these arguments, the returned objects can be restricted to include only
those that contain a certain operation string (’op’) or public key associated with
an operation (’use_op_spec_pub’). Both of these additional query arguments are
optional.

The balances GET request and database query, required the addition of a ’bal-
ance_key’ query argument. If this optional query argument is specified, only
balances containing this key are returned.

PATCH

As the auditor runs, some tables might accumulate many rows. To only show
rows that have not been seen yet, it is possible to ’supress’ old entries from the
webpage. A row that is suppressed is not shown again in the future unless specif-
ically requested.

This is done with a PATCH request, with which an entry of a table of the auditor
can be altered in a predetermined way. The only fields that can be changed with
this request are the ’suppressed’ fields of a table. As an example, in the table
emergency by count, to change the second rows’ suppressed value to true, one
would call the following endpoint: http://localhost:8083/monitoring/emergency-
by-count/2 (again, assuming the auditor runs locally)

In the body of the request, one can send a very simple JSON object that looks like
this:

{
"suppressed" : true

}

One could also unsuppress a row, by setting the value to false.

Not every endpoint can be suppressed. Chapter 4.5 further elaborates, how end-
points are divided into groups. Only entries in tables that store actual emergen-
cies or errors can be suppressed. It makes no sense to suppress internal consis-
tency information the auditor stores for itself.

36

http://localhost:8083/monitoring/emergency-by-count/2
http://localhost:8083/monitoring/emergency-by-count/2

4. Implementation

4.3.2. PostgreSQL C API

ThePostgreSQLCAPI enables interactionbetweenCand the auditors PostgreSQL
tables. This API is used by the webserver of the auditor as well as the helpers and
tests.

It exposes atmost four functions for each table, one to get rows from thedatabase,
one to add rows to it, one to update a row and one to delete rows. Not all tables
support all these functionalities.

Select

The query parameters from the the REST GET requests can be used here, to re-
trieve the correct elements with a SELECT statement. A JSON object is returned.

Insert

Allowsone to insert an element into thePostgreSQLdatabase via adatabasequery.
Values like row_id and suppressed (where applicable) are automatically gener-
ated by PostgreSQL, and must not be inserted.

Update

Formost tables, this function is closely related to the PATCH function in the REST
API. The only thing this function updates is the ’suppressed’ field of any table of
the auditor. Though, some tables do support updating other fields as well. This
way, an entry can be updated with new values, instead of creating a new one.

Delete

With this function, it’s possible to delete one row at a time from a given table.
Right now, this function is not actually used by any helpers, except for the deposit
helper, which deletes rows it already processed from it’s database.

4.4. TRIGGERS, LISTEN and NOTIFY

At the heart of the real-time logic are PostgreSQL triggers, that fire if new data is
added to certain tables of the exchange.

Undernormal operation, helpers aredormant, but listen to specific triggers through
event handlers. If a PostgreSQL trigger activates, these event handlers are called,
and the helper begins its analysis. Some tables in the exchange’s database trigger
more than one helper to wake up.

37

4. Implementation

4.5. Single Page Application

4.5.1. Description

The auditor continuouslymonitors changes in the exchange database, andwrites
any suspicious behaviour in its database. A small website was built, to display
these results in an easily digestible way.

4.5.2. Technologies

Within GNU Taler, some systems already use single page applications, meaning
templates could be used to make this single page application similar to other
components’ frontends. As a result we used Preact, TypeScript and Scss. As for
the used server technologies, node.js and the Taler internal webserver, which is
based on microhttp, were used.

4.5.3. Implementation

Figure 4.3.: Dashboard key figures

Data from the auditor is divided into several categories. Key figures displays gen-
eral info about the exchange, the critical errors and inconsistencies tabs show
suspicious things the auditor detected in it’s audits. Operating status shows sta-
tus information about the auditor itself. Because all tables in the auditor database
have different columns, they do not always display the same information, even if
they are in the same category.

38

4. Implementation

4.5.4. Authentication

Figure 4.4.: Bearer token implementation

Users of the webportal can add a bearer token via a textfield, so the auditor API
can be accessed. When first launching the site, a popup asks for the token and
validates it, before granting access to the application. The implementation can
be seen in figure 4.4..

4.5.5. Dashboards

The implementation of the dashboards per group was organized per their data.
The focus was on showing themost important values directly, but still displaying
thedata in full and allowing for a complete analysis. In the keyfigures dashboard,
we see all findings with their count and their gains or losses (see figure 4.3.).

Figure 4.5.: Dashboard critical error

For the critical errors, the focus lay on presenting the worst possible errors.

39

4. Implementation

Figure 4.6.: Dashboard operating status

The operation’s view dashboard shall give a quick overview over the state of the
network and it’s operating status. Thus it displays the counts of operating status
findings, their potential time difference and diagnostic strings.

Figure 4.7.: Dashboard inconsistencies

Here, all possible auditor findings are displayed and can be investigated further,
leading to a full view of each table status.

Figure 4.8.: Finding detail view

40

5. Discussion

5.1. Approach

Adding these tables and functions amounted to somany new files and additional
pieces of code across many existing ones, that a python script was used to gener-
ate some of the required C code. This was especially easy for the PATCH and
DELETE HTTP functions, since they needed no customization, except for the
name of the table they affected. Adapting the script to produce code for the GET
and PUT functions was more difficult, and still required some manual interven-
tion afterwards.

To actually generate code, the scripts read from the sql files that contained the au-
ditor tables, extracted information like column names and types or table names
and filled those into string templates. However, because C structures like hashes,
EdDSA [15] signatures or EdDSA keys are all stored as byte arrays in PostgreSQL,
the scripts could not infer those types when generating C code that required
them. This had to be corrected manually.

The documentation of the REST JSON API of the auditor was also generated with
the help of a python script. It too, worked by extracting relevant table columns,
types andnames fromSQLfiles and inserting them into a string template. Though
significant changes and additions were necessary in the documentation as well.

41

5. Discussion

5.2. Future Work

Despite the progress made in this project, there are also a lot of things that could
be addressed in future projects.

The webportal, for example, could display more detailed information still, and
perhaps enjoy some usability upgrades. Also, the webpage could, instead of peri-
odically polling the auditor database, receive notifications from the HTTP server
if newdata is available, and then fetch itwhenneeded. Another useful feature the
auditor could provide, is using push notifications or emails to alert exchange op-
erators as soon as emergencies are detected. Also, a proper dataset could be set
up, to further fine tune the frontend by analyzing the data and finding further in-
sights. A big difference could potentiallymake the extension of the auditor’s data
model by historical auditor data to show the development, usage and operating
history of the exchange.

The tests to check if the helpers are working correctly could also be improved.
Some existing tests are not working properly, and should be fixed. Perhaps more
tests could be added to find more edge cases, or constellations which are not
yet caught by existing ones. Like finding auditor idempotency cases and storing
them.

Work could be done to parallelize the helpers’ analysis, with the intention of
making them faster. Either, parallelization could be done solely on the CPU,
or some calculations could even be offloaded to the GPU and free up resources
on the main processor. Though parallelization on the GPU might promise large
performance gains, implementing the necessary features would not be trivial.
Some of the helpers’ responsibilities include verifying cryptographic signatures,
which involves modular exponentiation with very large integer numbers. GPUs
arenot designed for suchoperations, andeven though theymight be able to verify
many signatures at once, that advantage of parallelization might not be enough.
Also, GPU programming is often generalized through frameworks like OpenGL
/ OpenCL [16]. This universal applicability comes with additional performance
losses, compared to CPUs. Highly optimized algorithms developed specifically
for a given GPU architecture, however, could perhaps yield acceptable results.
This could be subject of a future paper.

42

6. Conclusion

This thesis not only showed the necessities a payment system auditor needs to
have, but even more so, the state of existing payment methods and the limits of
mostmodern technology implementations. This current auditor is now in a state
where it can be used to test its production readiness and can be operated to audit
instances of exchanges. Thus, we were able to add substantial improvements to
the auditors capabilities and usability.

We believe that accountability is not just a commodity, but a necessity, especially
when it comes to modern payment systems. We also believe that GNU Taler, and
its auditor can deliver precisely these things. It seems however, that not everyone
shares this simple notion with us.

Right now, the EU considers launching the Digital Euro [17], which is supposed
to be a digital alternative to the Euro; in that sense, it would be much like GNU
Taler. Crucially though, where the Digital Euro differs from GNU Taler, is the
support for anonymous transitive offline payments. Such offline payments are
virtually impossible to audit or conclusively verify, as a device that is offline may
never be connected to the Internet, thus depriving auditors of the opportunity
to inspect its state in a timely fashion. The problem is enhanced by the need to
rely on hardware security modules with a horrible track record [18] as the CAP
theorem by Eric Brewer, Seth Gilbert and Nancy Lynch [19,20] makes it clear that
maintaining consistency merely via software and protocols is impossible in this
setting.

We can confidently say, that GNUTaler is the payment systemwewant to use and
want to be used by society, going forward in the era of digital money. Or in other
words: weknowofno current existing payment system that protects data privacy,
ensures security and offers a state of the art wallet and that we can put our trust
in, due its licensing model, apart from GNU Taler. The GNU Taler auditor is an
important part of the answer why society can trust the system, and other digital
currency solutions should be evaluated with this level of auditability in mind.

All this is to say, that we think GNU Taler could help solve some of the shortcom-
ings of payment systems today, and that the auditing philosophy behind it plays
a vital part in that.

43

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Erklärung der Diplomandinnen und Diplomanden
Déclaration des diplômant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbständig durch-
geführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen
Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thèse de bachelor de manière autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidé­e dans mon travail sont intégralement mentionnées dans
l’annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom ………………………………………………

Datum/Date ………………………………………………

Unterschrift/Signature ………………………………………………

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen.
Ce formulaire doit être joint au rapport de la thèse de bachelor.

Eigel, Nicola Sacha

06.06.2024

44

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Erklärung der Diplomandinnen und Diplomanden
Déclaration des diplômant-e-s

Selbständige Arbeit / Travail autonome

Ich bestätige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbständig durch-
geführt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollständig aufgeführt. Sämtliche Inhalte, die nicht von mir stammen, sind mit dem genauen
Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thèse de bachelor de manière autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidé­e dans mon travail sont intégralement mentionnées dans
l’annexe de ma thèse. Tous les contenus non rédigés par mes soins sont dûment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom ………………………………………………

Datum/Date ………………………………………………

Unterschrift/Signature ………………………………………………

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen.
Ce formulaire doit être joint au rapport de la thèse de bachelor.

45

Bibliography

[1] Bernie Madoff: Who He Was, How His Ponzi Scheme Worked — investope-
dia.com. https://www.investopedia.com/terms/b/bernard-madoff.asp.
[Accessed 10-06-2024].

[2] Condé Nast. How the Biggest Fraud in German History Unravelled
— newyorker.com. https://www.newyorker.com/magazine/2023/03/06/
how-the-biggest-fraud-in-german-history-unravelled, 2023. [Ac-
cessed 10-06-2024].

[3] Sam Bankman-Fried and the FTX collapse, explained —
nbcnews.com. https://www.nbcnews.com/tech/crypto/
sam-bankman-fried-crypto-ftx-collapse-explained-rcna57582. [Ac-
cessed 10-06-2024].

[4] Derek Saul. First Republic Bank Failure: A Timeline Of What
Led To The Second-Largest Bank Collapse In U.S. History —
forbes.com. https://www.forbes.com/sites/dereksaul/2023/05/01/
first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-collapse-in-us-history/.
[Accessed 10-06-2024].

[5] GNU Taler team. Gnu taler website. https://taler.net/de/. Accessed:
2024-06-03.

[6] Florian Dold. The gnu taler system: practical and provably secure elec-
tronic payments. (le système gnu taler: Paiements électroniques pratiques
et sécurisés). https://api.semanticscholar.org/CorpusID:195785269, 2019.

[7] Postgresql listen/notify. https://www.postgresql.org/docs/current/
sql-notify.html. [Accessed 10-06-2024].

[8] Taler Systems team. Taler systems website. https://www.taler-systems.
com/en/electronic-cash.html. Accessed: 2024-06-03.

[9] Ronald L Rivest, Adi Shamir, and Leonard Adleman. Amethod for obtaining
digital signatures andpublic-key cryptosystems. Communications of theACM,
21(2):120–126, 1978.

[10] Wikipedia. Blind signature. https://en.wikipedia.org/wiki/Blind_
signature. Accessed: 2024-06-03.

46

https://www.investopedia.com/terms/b/bernard-madoff.asp
https://www.newyorker.com/magazine/2023/03/06/how-the-biggest-fraud-in-german-history-unravelled
https://www.newyorker.com/magazine/2023/03/06/how-the-biggest-fraud-in-german-history-unravelled
https://www.nbcnews.com/tech/crypto/sam-bankman-fried-crypto-ftx-collapse-explained-rcna57582
https://www.nbcnews.com/tech/crypto/sam-bankman-fried-crypto-ftx-collapse-explained-rcna57582
https://www.forbes.com/sites/dereksaul/2023/05/01/first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-collapse-in-us-history/
https://www.forbes.com/sites/dereksaul/2023/05/01/first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-collapse-in-us-history/
https://taler.net/de/
https://www.postgresql.org/docs/current/sql-notify.html
https://www.postgresql.org/docs/current/sql-notify.html
https://www.taler-systems.com/en/electronic-cash.html
https://www.taler-systems.com/en/electronic-cash.html
https://en.wikipedia.org/wiki/Blind_signature
https://en.wikipedia.org/wiki/Blind_signature

Bibliography

[11] GNU Taler team. Gnu taler developer manual. https://docs.taler.net/
taler-developer-manual.html. Accessed: 2024-06-03.

[12] LibEuFin; GNU Taler. https://docs.taler.net/libeufin/index.html,
2014. [Accessed 10-06-2024].

[13] GNU Taler team. Gnu taler protocol descriptions. https://git.taler.net/
exchange.git/tree/doc/system/taler. Accessed: 2024-06-06.

[14] GNU Taler team. Gnu taler merchant backoffice codebase. https://git.
taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui.
Accessed: 2024-06-05.

[15] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic Engi-
neering, 2(2):77–89, Aug 2012.

[16] OpenCL - The Open Standard for Parallel Programming of Heterogeneous
Systems — khronos.org. https://www.khronos.org/opencl/. [Accessed 12-
06-2024].

[17] European Central Bank. Digital euro. https://www.ecb.europa.eu/euro/
digital_euro/html/index.en.html. [Accessed 10-06-2024].

[18] Researchers Discover Way to Hack Hardware Security Mod-
ule, Gain Access to Cryptographic Keys. https://www.
darkreading.com/identity-access-management-security/
researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys.
[Accessed 10-06-2024].

[19] E.A. Brewer. Towards robust distributed systems, folien zur keynote des 19.
acm sigact-sigops symposium on principles of distributed computing, port-
land, oregon, usa, 2000. https://people.eecs.berkeley.edu/~brewer/
cs262b-2004/PODC-keynote.pdf. Accessed: 2024-06-04.

[20] Nancy Lynch Seth Gilbert. Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. ACM Transactions on Com-
puter Systems, 2002.

47

https://docs.taler.net/taler-developer-manual.html
https://docs.taler.net/taler-developer-manual.html
https://docs.taler.net/libeufin/index.html
https://git.taler.net/exchange.git/tree/doc/system/taler
https://git.taler.net/exchange.git/tree/doc/system/taler
https://git.taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui
https://git.taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui
https://www.khronos.org/opencl/
https://www.ecb.europa.eu/euro/digital_euro/html/index.en.html
https://www.ecb.europa.eu/euro/digital_euro/html/index.en.html
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

List of Figures

1.1. Logo of GNU Taler [5] . 2

2.1. Overview of the taler architecture [8] 7
2.2. Old Auditor architecture simplified 11
2.3. Overview of states and state changes of the reserve [13] 12
2.4. Overview of states and state changes of coins [13] 13
2.5. Overview of states and state changes of deposits [13] 15

3.1. New Auditor architecture . 23
3.2. Merchant SPA . 25

4.1. Interface Detail . 34
4.2. Limit and Offset Argument . 35
4.3. Dashboard key figures . 38
4.4. Bearer token implementation . 39
4.5. Dashboard critical error . 39
4.6. Dashboard operating status . 40
4.7. Dashboard inconsistencies . 40
4.8. Finding detail view . 40

A.1. Jira backlog . 52
A.2. Task Helper-Aggregation . 52

48

Glossary

API ApplicationProgramming Interface (API) Enables away for different com-
ponents of a program to communicate with eachother

CPU Central Processing Unit (CPU) The main processor in a computer, which
handles most tasks

Crockford Base32 Crockford Base32 A special version of a common encoding
scheme. Crockford’s version is easy for humans and machines to read and
type, because it is less ambiguous.

GPU Graphics Processing Unit (GPU) A dedicated processor intended to accel-
erate image processing or parallel tasks

JSON JavaScript Object Notation (JSON) A well-known, human-readable and
standardised format to store and transmit data in

REST RepresentationalStateTransfer (REST)Aneasily scalable andwell-defined
software architectural style with a clear client / server relationship

SPA Single Page Application (SPA) A webpage, that serves dynamic content in-
side the current page, instead of loading completely new pages

SQL Structured Query Language (SQL) A language used interact with various
database systems, like PostgreSQL

49

A. Appendices

Project management A.1

Auditor REST API A.2

Python scripts A.3

A.1. Project management

A.1.1. Definition

At start of the project, we decided upon which project management model we
wanted use, how it is implemented, tracked and how it will be documented. As
the goals and scope were set, we were ready to define the details. The stakehold-
ers, projectmembers and project roleswere decided upon project launch and are
defined in the titel page. The artifacts to be delivered were the following, which
is the default for every thesis at the BFH:

▶ Source code

▶ Thesis report

▶ Poster

▶ Book entry

▶ Video

▶ Presentation

The following deadlines were presented by the bfh and we had to adhere:

▶ Till 19.04.2024: Meeting with the expert

▶ 28.05.2024: Delivery poster

▶ 10.06.2024: Delivery book entry

▶ 13.06.2024: Delivery video

▶ 13.06.2024: Delivery thesis report

▶ 13.06.2024: Delivery source code

50

A. Appendices

▶ 14.06.2024: Holding presentation & Techday

▶ 26.06.2024: Bachelor thesis defence

Risks & mitigations

We identified the following risks for our project:

▶ Deadline risk

▶ Lack of time

▶ Lack of knowledge

▶ Absences

Wehadnegligible risk of losing ourwork on artifacts, asweusedGit as a software,
to distribute our work done to various systems at all times. Thus our main risk
become the risk of not meeting deadlines to the time or resource issues.

A.1.2. Methodology

Our approach was to keep the project management part as simple, straight for-
ward and small as possible, as we have a very small project team and only a short
project time frame.

To absorb possible shortcomings of our approach, we prioritized speed, agility
and in person exchange above anything else. So decided upon using Scrum, not
only as we have a lot of experience in it and we also have a certified ScrumMas-
ter in our team, but moreso because we wanted it’s agility and speed. We wanted
the ability to react quickly to meet approaching deadline expectations, potential
failures and self set dangers. Thus we set our Sprint duration to one week and
plannedour sprint planning, reviewand retrospectivemeetings on eachWednes-
day in thewhole project duration. Thesemeetings were to be held in personwith
the whole project team attending, meaning professors and students, in Christian
Grothoff’s office at BFH’s Rolex building in 2502 Biel, Höheweg 82.

51

A. Appendices

A.1.3. Organization

Figure A.1.: Jira backlog

After deciding the project methodology and putting the procedure in place, we
quickly created our backlog. We defined each tasks with its sub tasks, specified
the definition of done and the expected results. We did not go as far as to poker
for story points estimates, as they did not really matter to us, because we just
defined deadlines of the task’s completion and worked with them, removing the
need for extra project management overhead.

Figure A.2.: Task Helper-Aggregation

As for project communication,we agreedonusing instantmessengers and e-mail
as part of our strategy.

52

A. Appendices

A.1.4. Execution

We took note of our project meetings to keep a hold of todos. Here are some
excerpts:

8.5.2024

▶ Remove ppdc in code

▶ Mark todos

15.5.2024

Poster:

▶ More pictures (auditor flow)

▶ Focus not on Taler, but the auditor and auditor architecture

▶ Less text

▶ Last section benefits, badly worded

▶ Don’t describe the history, but the new state

▶ Christian checks helper wire

▶ Book deadline: ask BFH office

▶ API spec in appendices ok

▶ Libeufin tables: fix

▶ Deposit tables: fix

22.5.2024

▶ Taler system architecture (illustration by taler team)

▶ Real-time auditing for gnu taler

▶ Example screenposterhttps://uebermedien.de/wp-content/uploads/2021/02/2021-
02-08-wirecard.jpg

▶ Example Bernie Madoff

53

A. Appendices

5.6.2024

▶ No content: 204 / 200 or empty array

▶ Fixme’s: in code & doc

▶ Remove suppress for no incidents tables

▶ Remove internals from api

▶ Endpoint sentences adjusting (remove api and sentence to endpoint)

▶ Code indent 2 spaces

▶ Wire out inconsistency

▶ Updates for same incident -> suppressed false

▶ RESTful API doc structure

▶ Spa frontend: dashboard1 progress & balances & details tables, dasboard2 criti-
cals, dashboard3 lags, dashboard4 detailed state (reserve balances/active purse/-
coin balances)

▶ Graphic adjustments: architecture

▶ 3.2 structure after business

▶ 4.2.2 remove screenshots and info structure, only text

▶ Remove 6.1

▶ Figure 2.2 label: simplified

▶ Auditor > auditor

A.1.5. Completion

We were able to complete the project and meet all deadline requirements. Our
strategy and procedures hold strong and most importantly, managed to be suc-
cessful on all set goals.

A.2. Auditor REST API

54

1.6. The Auditor RESTful JSON API
The API specified here follows the general conventions for all details not specified in the individual requests. The glossary defines
all specific terms used in this section.

Table of Contents

• Authentication
• Obtaining Auditor Version
• Deposit Confirmations
• Monitoring API

◦ Fee Time Inconsistencies
◦ Emergencies
◦ Emergencies By Count
◦ Row Inconsistencies
◦ Reserve In Inconsistencies
◦ Purse Not Closed Inconsistencies
◦ Reserve Not Closed Inconsistencies
◦ Reserve Balance Insufficient Inconsistencies
◦ Invalid Signature Losses
◦ Coin Inconsistencies
◦ Denominations Without Signatures
◦ Misattribution In Inconsistencies
◦ Deposit Confirmations
◦ Denomination Key Validity Withdraw Inconsistencies
◦ Amount Arithmetic Inconsistencies
◦ Wire Format Inconsistencies
◦ Refreshes Hanging
◦ Closure Lags
◦ Wire Out Inconsistencies
◦ Reserve Balance Summary Wrong Inconsistencies
◦ Row Minor Inconsistencies

• Monitoring Auditor Status
◦ Balances
◦ Historic Denomination Revenue
◦ Denomination Pending
◦ Historic Reserve Summary
◦ Reserves
◦ Purses
◦ Progress

• Complaints

1.6.1. Authentication
Each auditor instance has separate authentication settings for the private API resources of that instance.

Currently, the API supports two main authentication methods:

• external: With this method, no checks are done by the auditor backend. Instead, a reverse proxy / API gateway must do all

authentication/authorization checks.
• token: With this method, the client must provide a Authorization: Bearer $TOKEN header, where $TOKEN is a secret

authentication token configured for the instance which must begin with the RFC 8959 prefix.

1.6.2. Obtaining Auditor Version
This endpoint is used by merchants to obtain a list of all exchanges audited by this auditor. This may be required for the merchant
to perform the required know-your-customer (KYC) registration before issuing contracts.

GET /config

Get the protocol version and some meta data about the auditor. This specification corresponds to current protocol being

version 1.

Response:

200 OK:

The auditor responds with an AuditorVersion object. This request should virtually always be successful.

Details:

 Contents

1.6.1. Authentication

1.6.2. Obtaining Auditor Version

1.6.3. Deposit Confirmations

1.6.4. Monitoring API

1.6.4.1. Fee Time Inconsistencies

1.6.4.2. Emergencies

1.6.4.3. Emergencies By Count

1.6.4.4. Row Inconsistencies

1.6.4.5. Reserve In Inconsistencies

1.6.4.6. Purse Not Closed Inconsistencies

1.6.4.7. Reserve Not Closed Inconsistencies

1.6.4.8. Reserve Balance Insufficient
Inconsistencies

1.6.4.9. Invalid Signature Losses

1.6.4.10. Coin Inconsistencies

1.6.4.11. Denominations Without Signatures

1.6.4.12. Misattribution In Inconsistencies

1.6.4.13. Deposit Confirmations

1.6.4.14. Denomination Key Validity Withdraw
Inconsistencies

1.6.4.15. Amount Arithmetic Inconsistencies

1.6.4.16. Wire Format Inconsistencies

1.6.4.17. Refreshes Hanging

1.6.4.18. Closure Lags

1.6.4.19. Wire Out Inconsistencies

1.6.4.20. Reserve Balance Summary Wrong
Inconsistencies

1.6.4.21. Row Minor Inconsistencies

1.6.5. Monitoring Auditor Status

1.6.5.1. Balances

1.6.5.2. Historic Denomination Revenue

1.6.5.3. Denomination Pending

1.6.5.4. Historic Reserve Summary

1.6.5.5. Reserves

1.6.5.6. Purses

1.6.5.7. Progress

1.6.6. Complaints

55

interface AuditorVersion {

// libtool-style representation of the Taler protocol version, see

// https://www.gnu.org/software/libtool/manual/html_node/Versioning.html#Versioning

// The format is "current:revision:age". Note that the auditor

// protocol is versioned independently of the exchange's protocol.

version: string;

// URN of the implementation (needed to interpret 'revision' in version).

// @since v0, may become mandatory in the future.

implementation?: string;

// Return which currency this auditor is auditing for.

currency: string;

// EdDSA master public key of the auditor.

auditor_public_key: EddsaPublicKey;

// EdDSA master public key of the exchange.

// Added in protocol v1.

exchange_master_public_key: EddsaPublicKey;

}

This endpoint is still experimental (and is not yet implemented at the time of this writing).

1.6.3. Deposit Confirmations
Merchants should probabilistically submit some of the deposit confirmations they receive from the exchange to auditors to ensure
that the exchange does not lie about recording deposit confirmations with the exchange. Participating in this scheme ensures that
in case an exchange runs into financial trouble to pay its obligations, the merchants that did participate in detecting the bad
behavior can be paid out first.

PUT /deposit-confirmation

Submits a DepositConfirmation to the exchange. Should succeed unless the signature provided is invalid or the exchange is
not audited by this auditor.

Response:

200 Ok:

The auditor responds with a DepositAudited object. This request should virtually always be successful.
403 Forbidden:

The signature on the deposit confirmation is invalid.
410 Gone:

The public key used to sign the deposit confirmation was revoked.

Details:

interface DepositAudited {

// TODO: maybe change to 204 No content instead?

}

Note

56

interface DepositConfirmation {

// Hash over the contract for which this deposit is made.

h_contract_terms: HashCode;

// Hash over the extensions.

h_extensions: HashCode;

// Hash over the wiring information of the merchant.

h_wire: HashCode;

// Time when the deposit confirmation confirmation was generated.

timestamp: Timestamp;

// How much time does the merchant have to issue a refund

// request? Zero if refunds are not allowed.

refund_deadline: Timestamp;

// By what time does the exchange have to wire the funds?

wire_deadline: Timestamp;

// Amount to be deposited, excluding fee. Calculated from the

// amount with fee and the fee from the deposit request.

amount_without_fee: Amount;

// Array of public keys of the deposited coins.

coin_pubs: EddsaPublicKey[];

// Array of deposit signatures of the deposited coins.

// Must have the same length as coin_pubs.

coin_sigs: EddsaSignature[];

// The Merchant's public key. Allows the merchant to later refund

// the transaction or to inquire about the wire transfer identifier.

merchant_pub: EddsaPublicKey;

// Signature from the exchange of type

// TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT.

exchange_sig: EddsaSignature;

// Public signing key from the exchange matching exchange_sig.

exchange_pub: EddsaPublicKey;

// Master public key of the exchange corresponding to master_sig.

// Identifies the exchange this is about.

// @deprecated since v1 (now ignored, global per auditor)

master_pub: EddsaPublicKey;

// When does the validity of the exchange_pub end?

ep_start: Timestamp;

// When will the exchange stop using the signing key?

ep_expire: Timestamp;

// When does the validity of the exchange_pub end?

ep_end: Timestamp;

// Exchange master signature over exchange_sig.

master_sig: EddsaSignature;

}

This endpoint is still experimental (and is not yet implemented at the time of this writing). A key open question is
whether the auditor should sign the response information.

1.6.4. Monitoring API
The following entries specify how to access the results of an audit.

For most endpoints, rows may be marked as ‘suppressed’ to not send them again upon subsequent GET requests. To do this, a
GenericAuditorMonitorPatchRequest object is used in the respective PATCH request.

Details:

interface GenericAuditorMonitorPatchRequest {

// If true, subsequent GET requests will not return this element by default

suppressed : boolean;

}

1.6.4.1. Fee Time Inconsistencies
This section highlights cases where validity periods associated with wire fees the exchange may charge merchants are invalid. This
usually means that the validity periods given for the same type of fee are overlapping and it is thus unclear which fee really
applies. This is a sign of a serious misconfiguration or data corruption as usually the exchange logic should prevent such a fee
configuration from being accepted.

GET /monitoring/fee-time-inconsistency

Note

57

Get a list of fee time inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of FeeTimeInconsistency objects. If no elements could be found, an empty
array is returned

Details:

interface FeeTimeInconsistency {

// Row ID of the fee in the exchange database.

row_id : Integer;

// Specifies the wire method for which the fee is inconsistent.

type : string;

// Gives the start date of the inconsistent fee.

time : Timestamp;

// Human readable description of the problem.

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/fee-time-inconsistency/$SERIAL_ID

This endpoint is used to suppress selected elements of fee time inconsistencies. Updates the ‘suppressed’ field of a fee time
inconsistency element with row ID $SERIAL_ID.

Request:

The body must be a GenericAuditorMonitorPatchRequest.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.2. Emergencies
This endpoint is used to obtain a list of emergencies.

Emergencies are errors where the total value of coins deposited (of a particular denomination) exceeds the total value that the
exchange remembers issuing. This usually means that the private keys of the exchange were compromised (stolen or factored) and
subsequently used to sign coins off the books. If this happens, all coins of the respective denomination that the exchange has
redeemed so far may have been created by the attacker, and the exchange would have to refund all of the outstanding coins from
ordinary users. Thus, the risk exposure is the amount of coins in circulation for a particular denomination and the maximum loss
for the exchange from this type of compromise.

The difference between emergencies and emergencies by count is how the auditor detected the problem: by comparing amounts,
or by counting coins. Theroretically, counting coins should always detect an issue first, but given the importance of emergencies,
the auditor checks both total amounts and total numbers of coins (they may differ as coins may be partially deposited).

GET /monitoring/emergency

Get a list of emergencies stored by the auditor.

Note

Note

58

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of Emergency objects. If no elements could be found, an empty array is
returned

Details:

interface Emergency {

// Unique row identifier

row_id : Integer;

// Hash of denomination public key

denompub_h : HashCode;

// What is the total value of all coins of this denomination that

// were put into circulation (and thus the maximum loss the

// exchange may experience due to this emergency).

denom_risk : Amount;

// What is the loss we have experienced so far (that

// is, the amount deposited in excess of the amount

// we issued).

denom_loss : Amount;

// When did the exchange start issuing coins in this the denomination.

deposit_start : Timestamp;

// When does the deposit period end for coins of this denomination.

deposit_end : Timestamp;

// What is the value of an individual coin of this denomination.

value : Amount;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/emergency/$SERIAL_ID

This endpoint is used to suppress select elements of emergencies. Update the ‘suppressed’ field of an emergency element
with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.3. Emergencies By Count
This endpoint is used to obtain a list of emergencies by count.

Emergencies are errors where more coins were deposited than the exchange remembers issuing. This usually means that the
private keys of the exchange were compromised (stolen or factored) and subsequently used to sign coins off the books. If this
happens, all coins of the respective denomination that the exchange has redeemed so far may have been created by the attacker,
and the exchange would have to refund all of the outstanding coins from ordinary users. Thus, the risk exposure is the amount of
coins in circulation for a particular denomination and the maximum loss for the exchange from this type of compromise.

Emergencies “by count” are cases where this type of money printing was detected simply by counting the number of coins the
exchange officially put into circulation and comparing it to the number of coins that were redeemed. If the number of redeemed
coins is higher than the number of issued coins, the auditor reports an emergency-by-count.

Note

Note

59

GET /monitoring/emergency-by-count

Get a list of emergencies by count stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of EmergencyByCount objects.

Details:

interface EmergencyByCount {

// Row ID of the fee in the exchange database.

row_id : Integer;

// Hash of the public denomination key to which the

// emergency applies.

denompub_h : HashCode;

// Number of coins the exchange officially issued of this

// denomination.

num_issued : Integer;

// Number of coins that were redeemed.

num_known : Integer;

// What is the total value of all coins of this denomination that

// were put into circulation (and thus the maximum loss the

// exchange may experience due to this emergency).

risk : Amount;

// When did the exchange start issuing coins in this the denomination.

start : Timestamp;

// When does the deposit period end for coins of this denomination.

deposit_end : Timestamp;

// What is the value of an individual coin of this denomination.

value : Amount;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/emergency-by-count/$SERIAL_ID

This endpoint is used to suppress select elements of emergencies by count. Update the ‘suppressed’ field of an emergency by
count element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Request:

The body must be a GenericAuditorMonitorPatchRequest.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.4. Row Inconsistencies
This section highlights inconsistencies in a specific row of a specific table of the exchange. Row inconsistencies are reported from
different sources, and largely point to some kind of data corruption (or bug). Nothing is implied about the seriousness of the
inconsistency. Most inconsistencies are detected if some signature fails to validate. The affected table is noted in the ‘table’ field. A
description of the nature of the inconsistency is noted in ‘diagnostic’.

Note

Note

60

GET /monitoring/row-inconsistency

Get a list of row inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of RowInconsistency objects.

Details:

interface RowInconsistency {

// Number of the affected row.

row_id : Integer;

// Name of the affected exchange table.

row_table : string;

// Human-readable diagnostic about what went wrong.

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/row-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of row inconsistencies. Update the ‘suppressed’ field of a row inconsistency
element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.5. Reserve In Inconsistencies
This section lists cases where the exchange’s and auditor’s expectation of amounts transferred into a reserve differs. Basically, the
exchange database states that a certain reserve was credited for a certain amount via a wire transfer, but the auditor disagrees
about this basic fact. This may result in either a customer loosing funds (by being issued less digital cash than they should be) or
the exchange loosing funds (by issuing a customer more digital cash than they should be).

GET /monitoring/reserve-in-inconsistency

Get a list of reserve in inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

Note

Note

61

200 OK:

The auditor responds with a top level array of ReserveInInconsistency objects.

Details:

interface ReserveInInconsistency {

// Unique row identifier

row_id : Integer;

// Amount the exchange expects to be in the reserve

amount_exchange_expected : Amount;

// Amount deposited into the reserve

amount_wired : Amount;

// Public key of the reserve

reserve_pub : EddsaPublicKey;

// Time of the deposit

timestamp : Timestamp;

// Account associated with the reserve

account : string;

// Human readable diagnostic of the problem

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-in-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve in inconsistencies. Update the ‘suppressed’ field of a reserve in
inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.6. Purse Not Closed Inconsistencies
This section highlights cases, in which either payer or payee did not finish their part of a P2P payment. This caused a purse ––
which may contain some money — to reach its expiration date. However, the exchange failed to properly expire the purse, which
means the payer did not get their money back. The cause is usually that the taler-exchange-expire helper is not running properly.

GET /monitoring/purse-not-closed-inconsistencies

Get a list of purse not closed inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of PurseNotClosedInconsistencies objects.

Details:

Note

Note

62

interface PurseNotClosedInconsistencies {

// Unique row identifier.

row_id : Integer;

// Public key of the affected purse

purse_pub : EddsaPublicKey;

// Amount still in the purse, which should have been refunded

amount : Amount;

// When the purse expired

expiration_date : Timestamp;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/purse-not-closed-inconsistencies/$SERIAL_ID

This endpoint is used to suppress select elements of purse not closed inconsistencies. Update the ‘suppressed’ field of a purse
not closed inconsistencies element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the

auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.7. Reserve Not Closed Inconsistencies
This section highlights cases, in which reserves were not closed, despite being expired. As a result, customers that wired funds to
the exchange and then failed to withdraw them are not getting their money back. The cause is usually that the taler-exchange-
closer process is not running properly.

GET /monitoring/reserve-not-closed-inconsistency

Get a list of reserve not closed inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of ReserveNotClosedInconsistency objects.

Details:

Note

Note

63

interface ReserveNotClosedInconsistency {

// Unique row identifier

row_id : Integer;

// Public key of the reserve

reserve_pub : EddsaPublicKey;

// Amount still in the reserve at the time of expiration

balance : Amount;

// Date the reserve expired

expiration_time : Timestamp;

// Human readable string describing the problem

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-not-closed-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve not closed inconsistencies. Update the ‘suppressed’ field of a
reserve not closed inconsistency element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by

the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.8. Reserve Balance Insufficient Inconsistencies
This section highlights cases where more coins were withdrawn from a reserve than the reserve contained funding for. This is a
serious compromise resulting in proportional financial losses to the exchange.

GET /monitoring/reserve-balance-insufficient-inconsistency

Get a list of reserve balance insufficient inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of ReserveBalanceInsufficientInconsistency objects.

Details:

interface ReserveBalanceInsufficientInconsistency {

// Unique row identifier

row_id : Integer;

// Public key of the affected reserve

reserve_pub : EddsaPublicKey;

// Whether this inconsistency is profitable for the exchange

inconsistency_gain : boolean;

// Amount possibly lost or gained by the exchange

inconsistency_amount : Amount;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

Note

Note

64

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-balance-insufficient-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve balance insufficient inconsistencies. Update the ‘suppressed’ field
of a reserve balance insufficient inconsistency element with row ID $SERIAL_ID, according to

GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.9. Invalid Signature Losses
This section lists operations that the exchange performed, but for which the signatures provided are invalid. Hence the operations
are invalid and the amount involved could be a loss for the exchange (as the involved parties could successfully dispute the
resulting transactions).

GET /monitoring/bad-sig-losses

Get a list of invalid signature losses stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

• operation – A string. If specified, only returns eligible rows with this BadSigLosses.operation
value. The default value is NULL which means to not filter by operaiton.

• use_op_spec_pub – A boolean. If true, use the value of OpSpecPub to only return eligible rows
with this BadSigLosses.operation_specific_pub value. The default value is NULL.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of BadSigLosses objects.

Details:

interface BadSigLosses {

// Unique row identifier

row_id : Integer;

// Operation performed, even though a signature was invalid

operation : string;

// Amount considered lost by the exchange

loss : Amount;

// Public key associated with an operation

operation_specific_pub : EddsaPublicKey;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/bad-sig-losses/$SERIAL_ID

This endpoint is used to suppress select elements of bad sig losses. Update the ‘suppressed’ field of a bad sig losses element
with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

Note

Note

Note 65

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.10. Coin Inconsistencies
This section lists cases where the exchange made arithmetic errors found when looking at the transaction history of a coin. The
totals sum up the differences in amounts that matter for profit/loss calculations of the exchange. When an exchange merely
shifted money from customers to merchants (or vice versa) without any effects on its own balance, those entries are excluded from
the total.

GET /monitoring/coin-inconsistency

Get a list of coin inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of CoinInconsistency objects.

Details:

interface CoinInconsistency {

// Unique row identifier

row_id : Integer;

// The operation performed by the exchange

operation : string;

// Total the exchange calculated

exchange_amount : Amount;

// Total the auditor calculated

auditor_amount : Amount;

// Public key of the coin in question

coin_pub : EddsaPublicKey;

// Whether this arithmetic error was profitable for the exchange

profitable : boolean;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/coin-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of coin inconsistencies. Update the ‘suppressed’ field of a coin inconsistency
element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.11. Denominations Without Signatures

Note

Note

Note

66

This section highlights denomination keys that lack a proper signature from the taler-auditor-offline tool. This may be legitimate,
say in case where the auditor’s involvement in the exchange business is ending and a new auditor is responsible for future
denominations. So this must be read with a keen eye on the business situation.

GET /monitoring/denominations-without-sigs

Get a list of denominations without signatures stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of DenominationsWithoutSigs objects.

Details:

interface DenominationsWithoutSigs {

// Unique row identifier

row_id : Integer;

// Hash of the denomination public key

denompub_h : HashCode;

// Value of each coin of the denomination that lacks

// the auditor's signature.

value : Amount;

// From when the denomination key in question is valid

start_time : Timestamp;

// When the denomination key in question expires

end_time : Timestamp;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/denominations-without-sigs/$SERIAL_ID

This endpoint is used to suppress select elements of denominations without sigs. Update the ‘suppressed’ field of a
denominations without signatures element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored

by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.12. Misattribution In Inconsistencies
This section lists cases where the sender account record of an incoming wire transfer differs between the exchange and the bank.
This may cause funds to be sent to the wrong account should the reserve be closed with a remaining balance, as that balance
would be credited to the original account.

GET /monitoring/misattribution-in-inconsistency

Get a list of misattribution in inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Note

Note

67

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of MisattributionInInconsistency objects.

Details:

interface MisattributionInInconsistency {

// Unique row identifier in the exchange database.

row_id : Integer;

// Amount of money sent to the wrong account

amount : Amount;

// Row of the transaction in the bank database as

// returned by the bank revenue API.

bank_row : Integer;

// Public key of the affected reserve

reserve_pub : EddsaPublicKey;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/misattribution-in-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of misattribution in inconsistencies. Update the ‘suppressed’ field of an
misattribution in inconsistency element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by

the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.13. Deposit Confirmations
This section contains a list of deposits confirmations that an exchange provided to merchants but failed to store in its own
database. This is indicative of potential fraud by the exchange operator, as the exchange should only issue deposit confirmations
after storing the respective deposit records in its database. Not storing the deposit data means that the exchange would not pay
the merchant (pocketing the money) or allow the customer to double-spend the money (which is naturally also not good).

Note that entries could appear in this list also because the exchange database replication is delayed. Hence, entries that are only a
few seconds old might not be indicative of an actual problem. If entries in this list are more than a few seconds old, the first thing
to check is whether or not the database replication from the exchange is working properly.

GET /monitoring/deposit-confirmations

Get a list of deposit confirmations stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Note

Note

68

Response:

200 OK:

The auditor responds with a top level array of DepositConfirmations objects.

Details:

interface DepositConfirmations {

// Row id in the exchange database

deposit_confirmation_serial_id : Integer;

// Hash over the contract for which this deposit is made.

h_contract_terms : HashCode;

// Hash over the policy concerning this deposit

h_policy : HashCode;

// Hash over the wiring information of the merchant.

h_wire : HashCode;

// Time when the deposit confirmation confirmation was generated.

exchange_timestamp : Timestamp;

// How much time does the merchant have to issue a refund

// request? Zero if refunds are not allowed.

refund_deadline : Timestamp;

// By what time does the exchange have to wire the funds?

wire_deadline : Timestamp;

// Amount to be deposited, excluding fee. Calculated from the

// amount with fee and the fee from the deposit request.

total_without_fee : Amount;

// Array of public keys of the deposited coins.

coin_pubs : EddsaPublicKey[];

// Array of deposit signatures of the deposited coins.

// Must have the same length as coin_pubs.

coin_sigs : EddsaSignature[];

// The Merchant's public key. Allows the merchant to later refund

// the transaction or to inquire about the wire transfer identifier.

merchant_pub : EddsaPublicKey;

// Signature from the exchange of type

// TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT.

exchange_sig : EddsaSignature;

// Public signing key from the exchange matching exchange_sig.

exchange_pub : EddsaPublicKey;

// Exchange master signature over exchange_sig.

master_sig : EddsaSignature;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/deposit-confirmations/$SERIAL_ID

This endpoint is used to suppress select elements of deposit confirmations. Update the ‘suppressed’ field of an deposit
confirmations element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.14. Denomination Key Validity Withdraw Inconsistencies
This section highlights cases, where denomination keys were used to sign coins withdrawn from a reserve before the
denomination was valid or after it was already expired for signing. This doesn’t exactly imply any financial loss for anyone, it is
mostly weird and may have affected the fees the customer paid.

GET /monitoring/denomination-key-validity-withdraw-inconsistency

Get a list of denomination key validity withdraw inconsistencies stored by the auditor. The following query parameters are
optional, and can be used to customise the response:

Request:

Note

Note

69

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of DenominationKeyValidityWithdrawInconsistency objects. If no elements
could be found, an empty array is returned

Details:

interface DenominationKeyValidityWithdrawInconsistency {

// Unique row identifier

row_id : Integer;

// When the withdrawal took place

execution_date : Timestamp;

// Public key of the reserve affected

reserve_pub : EddsaPublicKey;

// Hash of the denomination public key involved in the withdrawal

denompub_h : HashCode;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/denomination-key-validity-withdraw-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of denomination key validity withdraw inconsistencies. Update the
‘suppressed’ field of a denomination key validity withdraw inconsistency element with row_id $SERIAL_ID, according to
GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.15. Amount Arithmetic Inconsistencies
This endpoint is used to obtain a list of amount arithmetic inconsistencies.

This section lists cases where the arithmetic of the exchange involving amounts disagrees with the arithmetic of the auditor.
Disagreements imply that either the exchange made a loss (sending out too much money), or screwed a customer (and thus at
least needs to fix the financial damage done to the customer). The profitable column is set to true if the arithmetic problem was
be determined to be profitable for the exchange, false if the problem resulted in a net loss for the exchange.

GET /monitoring/amount-arithmetic-inconsistency

Get a list of amount arithmetic inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

Note

Note

70

200 OK:

The auditor responds with a top level array of AmountArithmeticInconsistency objects. If no elements could be found, an
empty array is returned

Details:

interface AmountArithmeticInconsistency {

// Unique row identifier

row_id : Integer;

// Name of the arithmetic operation performed

operation : string;

// Amount according to the exchange

exchange_amount : Amount;

// Amount according to the auditor

auditor_amount : Amount;

// Whether the miscalculation is profitable for the exchange

profitable : boolean;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/amount-arithmetic-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of amount arithmetic inconsistencies. Update the ‘suppressed’ field of an
amount arithmetic inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored
by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.16. Wire Format Inconsistencies
This section highlights cases where the wire transfer subject was used more than once and is thus not unique. This indicates a
problem with the bank’s implementation of the revenue API, as the bank is supposed to warrant uniqueness of wire transfer
subjects exposed via the revenue API (and bounce non-unique transfers).

GET /monitoring/wire-format-inconsistency

Get a list of wire format inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of WireFormatInconsistency objects. If no elements could be found, an empty
array is returned

Details:

Note

Note

71

interface WireFormatInconsistency {

// Unique row identifier

row_id : Integer;

// Amount that was part of the wire

amount : Amount;

// Offset of the duplicate wire transfer subject

// in the bank database according to the revenue API.

wire_offset : Integer;

// True if this diagnostic was suppressed.

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/wire-format-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of wire format inconsistencies. Update the ‘suppressed’ field of a wire
format inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the
auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.17. Refreshes Hanging
This section highlights cases, where a coin was melted but the reveal process was not finished by the wallet. Usually, a wallet will
do both requests in rapid succession to refresh a coin. This might happen, even if the exchange is operating correctly, if a wallet
goes offline after melting. However, after some time wallets should in most cases come back online and finish the operation. If
many operations are hanging, this might be indicative of a bug (exchange failing on reveal, or wallets not implementing refresh
correctly).

GET /monitoring/refreshes-hanging

Get a list of refreshes hanging stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of RefreshesHanging objects. If no elements could be found, an empty array is
returned

Details:

Note

Note

72

interface RefreshesHanging {

// Unique row identifier

row_id : Integer;

// Amount in coin not found in the exchange

amount : Amount;

// Public key of coin

coin_pub : EddsaPublicKey;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/refreshes-hanging/$SERIAL_ID

This endpoint is used to suppress select elements of refreshes hanging. Update the ‘suppressed’ field of a refreshes hanging
element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.18. Closure Lags
This endpoint is used to obtain a list of closure lags.

A closure lag happens if a reserve should have closed a reserve and wired (remaining) funds back to the originating account, but
did not do so on time. Significant lag may be indicative of fraud, while moderate lag is indicative that the systems may be too slow
to handle the load. Small amounts of lag can occur in normal operation.

If closure lag is experienced, the administrator should check that the taler-exchange-closer component is operating correctly.

GET /monitoring/closure-lags

Get a list of closure lags stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of ClosureLags objects. If no elements could be found, an empty array is
returned

Details:

Note

Note

73

interface ClosureLags {

// Unique row identifier

row_id : Integer;

// Amount of money left in the reserve

amount : Amount;

// When should the reserve have been closed

deadline : Timestamp;

// The wire transfer identifier

wtid : HashCode;

// payto URI (RFC 8905) of the account that

// should have been credited.

account : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/closure-lags/$SERIAL_ID

This endpoint is used to suppress select elements of closure lags. Update the ‘suppressed’ field of a closure lags element with
row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.19. Wire Out Inconsistencies
This section highlights cases where the exchange wired a different amount to a destimation account than the auditor expected.

GET /monitoring/wire-out-inconsistency

Get a list of wire out inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of WireOutInconsistency objects. If no elements could be found, an empty
array is returned

Details:

interface WireOutInconsistency {

// Unique row identifier

row_id : Integer;

// Account money was wired to

destination_account : string;

// How much was suppossed to be wired according to the auditor.

expected : Amount;

// The amount the exchange claims to have wired.

claimed : Amount;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

Note

Note

74

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/wire-out-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of wire out inconsistencies. Update the ‘suppressed’ field of a wire out
inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.20. Reserve Balance Summary Wrong Inconsistencies
This section highlights cases, where the exchange’s and auditors’ expectation of the amount of money left in a reserve differs.

GET /monitoring/reserve-balance-summary-wrong-inconsistency

Get a list of reserve balance summary wrong inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of ReserveBalanceSummaryWrongInconsistency objects. If no elements could
be found, an empty array is returned

Details:

interface ReserveBalanceSummaryWrongInconsistency {

// Unique row identifier

row_id : Integer;

// Public key of the reserve affected

reserve_pub : EddsaPublicKey;

// Amount of summary the exchange calculated

exchange_amount : Amount;

// Amount of summary the auditor calculated

auditor_amount : Amount;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-balance-summary-wrong-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve balance summary wrong inconsistencies. Update the ‘suppressed’
field of a reserve balance summary wrong inconsistency element with row_id $SERIAL_ID, according to
GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

Note

Note

Note

75

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.21. Row Minor Inconsistencies
The section highlights inconsistencies where a row in an exchange table has a value that is does not satisfy expectations (such as a
malformed signature). These are cause for concern, but not necessarily point to a monetary loss (yet).

GET /monitoring/row-minor-inconsistencies

Get a list of row minor inconsistencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• return_suppressed – A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of RowMinorInconsistencies objects. If no elements could be found, an empty
array is returned

Details:

interface RowMinorInconsistencies {

// Number of the row in the affected table

row_id : Integer;

// The row number in the affected table

row_table : Integer;

// Human readable string describing the problem

diagnostic : string;

// True if this diagnostic was suppressed.

suppressed : boolean;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/row-minor-inconsistencies/$SERIAL_ID

This endpoint is used to suppress select elements of row minor inconsistencies. Update the ‘suppressed’ field of a row minor
inconsistencies element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5. Monitoring Auditor Status
The following entries specify how to access information the auditor keeps to properly perform audits. These tables do not contain
inconsistencies, instead they store information about balances, reserves, purses etc. Values in these tables should not differ from
their respective exchanges’ version.

1.6.5.1. Balances
Returns the various balances the auditor tracks for the exchange, such as coins in circulation, fees earned, losses experienced, etc.

GET /monitoring/balances

Note

Note

Note

76

Get a list of balances stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

• balance_key – a string identifying a balance. If specified, only returns elements with this exact
key. The default value is NULL.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of Balances objects. If no elements could be found, an empty array is returned

Details:

interface Balances {

// Unique row identifier

row_id : Integer;

// String identifying a balance

balance_key : string;

// Amount of the balance

balance_value : Amount;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.2. Historic Denomination Revenue
This endpoint is used to obtain a list of historic denomination revenue, that is the profits and losses an exchange has made from
coins of a particular denomination where the denomination is past its (deposit) expiration and thus all values are final.

GET /monitoring/historic-denomination-revenue

Get a list of historic denomination revenue stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of HistoricDenominationRevenue objects. If no elements could be found, an
empty array is returned

Details:

Note

77

interface HistoricDenominationRevenue {

// Unique row identifier

row_id : Integer;

// Hash code of the denomination public key involved

denom_pub_hash : HashCode;

// Time when the denomination expired and thus the revenue

// was computed.

revenue_timestamp : Timestamp;

// Total fee revenue the exchange earned from coins of this

// denomination.

revenue_balance : Amount;

// Total losses the exchange experienced from this denomination

// (this basically only happens if someone was able to forge

// denomination signatures). So non-zero values are indicative

// of a serious problem.

loss_balance : Amount;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.3. Denomination Pending
This endpoint is used to obtain a list of balances for denominations that are still active, that is coins may still be deposited (or
possibly even withdrawn) and thus the amounts given are not final.

GET /monitoring/denomination-pending

Get a list of denomination pending stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of DenominationPending objects. If no elements could be found, an empty
array is returned

Details:

interface DenominationPending {

// Unique row identifier

row_id : Integer;

// Hash of the denomination public key

denom_pub_hash : HashCode;

// Total value of coins remaining in circulation (excluding

// the value of coins that were recouped, those are always

// just under recoup_loss).

denom_balance : Amount;

// Total value of coins redeemed that exceeds the amount we

// put into circulation. Basically, this value grows if we

// wanted to reduce denom_balance (because a coin was deposited)

// but we could not because the denom_balance was already zero.

denom_loss : Amount;

// Total number of coins of this denomination that were

// put into circulation.

num_issued : Integer;

// Total value of the coins put into circulation.

denom_risk : Amount;

// Losses the exchange had from this denomination due to coins

// that were recouped (after the denomination was revoked).

recoup_loss : Amount;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

Note

Note

78

1.6.5.4. Historic Reserve Summary
This section summarizes historic profits an exchange made from reserves and associated reserve-specific fees.

GET /monitoring/historic-reserve-summary

Get a list of historic reserve summary stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of HistoricReserveSummary objects. If no elements could be found, an empty
array is returned

Details:

interface HistoricReserveSummary {

// Unique row identifier

row_id : Integer;

// From when the summary starts

start_date : Timestamp;

// When the summary ends

end_date : Timestamp;

// Profits the exchange charged for the reserve

reserve_profits : Amount;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.5. Reserves
This endpoint is used to obtain a list of open reserves that the auditor is currently tracking balances for.

GET /monitoring/reserves

Get a list of reserves stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of Reserves objects. If no elements could be found, an empty array is returned

Details:

Note

79

interface Reserves {

// Unique row identifier

auditor_reserves_rowid : Integer;

// Public key of the reserve

reserve_pub : EddsaPublicKey;

// Amount in the balance

reserve_balance : Amount;

// Reserve losses are incurred if (a) a reserve is

// incorrectly credited from a recoup for a non-revoked

// coin, or (b) if the exchange allowed more digital cash

// to be withdrawn from a reserve than the balance of the

// reserve should have permitted. FIXME: We may want to

// distinguish these two cases in the future.

reserve_loss : Amount;

// Amount earned by charging withdraw fees

withdraw_fee_balance : Amount;

// Amount earned by charging a closing fee on the reserve

close_fee_balance : Amount;

// Total purse fees earned from this reserve

purse_fee_balance : Amount;

// Total reserve open fees earned from the reserve

open_fee_balance : Amount;

// Total reserve history fees earned from this reserve

history_fee_balance : Amount;

// When the purse expires

expiration_date : Timestamp;

// Who created the account

origin_account : string;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.6. Purses
This endpoint is used to obtain information about open purses.

GET /monitoring/purses

Get a list of purses stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: • limit – A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.

• offset – An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.

Response:

200 OK:

The auditor responds with a top level array of Purses objects. If no elements could be found, an empty array is returned

Details:

interface Purses {

// Unique row identifier

auditor_purses_rowid : Integer;

// Public key of the purse

purse_pub : EddsaPublicKey;

// Amount currently stored in the purse

balance : Amount;

// Amount the purse is intended for / the maximum amount that can be in the purse

target : Amount;

// When the purse expires

expiration_date : Timestamp;

}

Note

80

© Copyright 2014-2024 Taler Systems SA (GPLv3+ or GFDL 1.3+).


Previous
1.5. Wallet-Core API Documentation

Next
1.7. Backup and Synchronization RESTful API 

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.7. Progress
This section contains information about the auditing progress an auditor has made.

GET /monitoring/progress

Get the progress stored by the auditor.

Response:

200 OK:

The auditor responds with a top level array of Progress objects. If no elements could be found, an empty array is returned

Details:

interface Progress {

// Key associated with a given progress point

progress_key : String;

// How much of the exchanges data has been processed so far

progress_offset : Integer;

}

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.6. Complaints
This endpoint is used by the wallet or merchants to submit proof of misbehavior of an exchange to the auditor.

To be designed and implemented.

PUT /complain

Complain about misbehavior to the auditor.

Note

Note

Note

81

A. Appendices

A.3. Python Scripts� �
1 import os
2 import re
3
4 dcm = """
5 . . _deposit−confirmation :
6
7 −−−−−−−−−−−−−−−−−−−−−
8 Deposit Confirmations
9 −−−−−−−−−−−−−−−−−−−−−
10
11 Merchants should probabi l ist ical ly submit some of the deposit
12 confirmations they receive from the exchange to auditors to ensure
13 that the exchange does not l i e about recording deposit confirmations
14 with the exchange . Participating in this scheme ensures that in case
15 an exchange runs into f inancial trouble to pay i t s obligations , the
16 merchants that did participate in detecting the bad behavior can be
17 paid out f i r s t .
18
19 . . http : put : : / deposit−confirmation
20
21 Submits a ‘DepositConfirmation ‘ to the exchange . Should succeed
22 unless the signature provided is inval id or the exchange is not
23 audited by this auditor .
24
25 **Response:**
26
27 : http : statuscode: ‘200 Ok‘ :
28 The auditor responds with a ‘DepositAudited ‘ object .
29 This request should v i r tual ly always be successful .
30 : http : statuscode: ‘403 Forbidden ‘ :
31 The signature on the deposit confirmation is inval id .
32 : http : statuscode: ‘410 Gone‘ :
33 The public key used to sign the deposit confirmation
34 was revoked .
35
36 **Details : **
37
38 . . ts : def : : DepositAudited
39
40 interface DepositAudited {
41 / / TODO: maybe change to ‘ ‘204 No content ‘ ‘ instead?
42 }
43
44 . . ts : def : : DepositConfirmation
45
46 interface DepositConfirmation {
47
48 / / Hash over the contract for which this deposit is made.
49 h_contract_terms : HashCode;
50
51 / / Hash over the extensions .
52 h_extensions : HashCode;
53
54 / / Hash over the wiring information of the merchant .
55 h_wire : HashCode;
56
57 / / Time when the deposit confirmation confirmation was generated .
58 timestamp : Timestamp;
59
60 / / How much time does the merchant have to issue a refund

82

A. Appendices

61 / / request? Zero i f refunds are not allowed .
62 refund_deadline : Timestamp;
63
64 / / By what time does the exchange have to wire the funds?
65 wire_deadline : Timestamp;
66
67 / / Amount to be deposited , excluding fee . Calculated from the
68 / / amount with fee and the fee from the deposit request .
69 amount_without_fee : Amount;
70
71 / / Array of public keys of the deposited coins .
72 coin_pubs : EddsaPublicKey [] ;
73
74 / / Array of deposit signatures of the deposited coins .
75 / / Must have the same length as ‘ ‘ coin_pubs ‘ ‘ .
76 coin_sigs : EddsaSignature [] ;
77
78 / / The Merchant ’ s public key . Allows the merchant to later refund
79 / / the transaction or to inquire about the wire transfer ident i f i e r .
80 merchant_pub : EddsaPublicKey ;
81
82 / / Signature from the exchange of type
83 / / ‘ ‘TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT‘ ‘ .
84 exchange_sig : EddsaSignature ;
85
86 / / Public signing key from the exchange matching ‘ ‘ exchange_sig ‘ ‘ .
87 exchange_pub : EddsaPublicKey ;
88
89 / / Master public key of the exchange corresponding to ‘ ‘master_sig ‘ ‘ .
90 / / Ident i f ies the exchange this is about .
91 / / @deprecated since v1 (now ignored , global per auditor)
92 master_pub : EddsaPublicKey ;
93
94 / / When does the val id i ty of the exchange_pub end?
95 ep_start : Timestamp;
96
97 / / When will the exchange stop using the signing key?
98 ep_expire : Timestamp;
99
100 / / When does the val id i ty of the exchange_pub end?
101 ep_end : Timestamp;
102
103 / / Exchange master signature over ‘ ‘ exchange_sig ‘ ‘ .
104 master_sig : EddsaSignature ;
105 }
106
107 . . note : :
108
109 This API is s t i l l experimental (and is not yet implemented at the
110 time of this writing) . A key open question is whether the auditor
111 should sign the response information .
112
113 """
114
115 dcm_del = """
116
117 This API is used by the auditor to delete an audited deposit confirmation .
118
119 . . http : delete : : / deposit−confirmation /$SERIAL_ID
120
121 Delete deposit confirmation entry with given ser ial_ id .
122

83

A. Appendices

123 **Response:**
124
125 : http : statuscode: ‘204 No content ‘ :
126 The deposit confirmation was deleted .
127
128 : http : statuscode: ‘401 Unauthorized ‘ :
129 Unauthorized request .
130
131 : http : statuscode: ‘404 Not found ‘ :
132 The deposit confirmation was unknown.
133
134 . . note : :
135
136 This API is s t i l l experimental (and is not yet implemented at the
137 time of this writing) .
138 """
139
140 spa_api = f"""
141 . . _spa−api :
142
143 −−−−−−−−−−−−−−−−−−−−−−−−−−−
144 Single Page Application API
145 −−−−−−−−−−−−−−−−−−−−−−−−−−−
146
147 The following entries specify how to access the results of an audit .
148
149 For most endpoints , rows may be marked as ’suppressed ’ , to not send them again upon

subsequent GET requests .
150 To do this , a : ts : type : ‘ GenericUpdate ‘ object may be used .
151
152 **Details : **
153
154 . . ts : def : : GenericUpdate
155
156 interface GenericUpdate { {
157
158 / / the row_id of a respective table that should be changed
159 row_id : Integer ;
160
161 suppressed : boolean ;
162
163 / / unused
164 ancient? : boolean ;
165
166 } }
167
168 """
169
170 en = {
171
172 "u_int64" : "Integer",
173 "taler_amount" : "Amount",
174 "boolean" : "boolean",
175 "text" : "string"
176
177 }
178
179
180 descriptions = {
181 "fee-time-inconsistency" : """
182
183 """,

84

A. Appendices

184 "amount-arithmetic-inconsistency" : """
185
186 """,
187 "closure-logs" : """
188
189 """,
190 "bad-sig-losses" : """
191 This table tracks the amount of money lost because of bad signatures .
192 """,
193 }
194
195
196
197
198
199
200 def repl(tp):
201
202
203 if tp not in en:
204 return "TODO"
205 else:
206 return en[tp]
207
208 def guessBYTEA(prop):
209 # prop is the properties name, l ike "denompub_h"
210
211 if prop == "row_id":
212 return "Integer"
213
214 if prop.endswith("_h") or prop.endswith("_hash") or prop.startswith("h_"):
215 return "HashCode"
216
217 if "time" in prop or "ends" in prop or "start" in prop or "_date" in prop or "_end" in

prop or "deadline" in prop or "expire" in prop or prop.endswith("_from"):
218 return "Timestamp"
219
220 if "_pub" in prop:
221 return "EddsaPublicKey"
222
223 if "_sig" in prop:
224 return "EddsaSignature"
225
226 if "diagnostic" in prop or "operation" in prop:
227 return "string"
228
229 if prop == "destination_account" or prop == "account" or prop == "type":
230 return "string"
231
232 if "num_" in prop or "offset" in prop or "row" in prop or prop.endswith("_id"):
233 return "Integer"
234
235 if "wtid" == prop:
236 return "Integer"
237
238 return "TODO"
239
240 def doc_upd(a):
241 w = a[0]
242
243 sc = a[2]
244 ssc = a[3]

85

A. Appendices

245 kc = a[4]
246 cc = a[5]
247 s = a[6]
248
249 s_plur = a[7]
250
251 template = f"""
252
253 This API is used to suppress select elements of { s_plur }
254
255 . . http : patch : : / { kc }
256
257 Update the ’suppressed ’ f ie ld of an {s} element according to : ts : type : ‘ GenericUpdate ‘ ,

stored by the auditor .
258
259 **Response:**
260
261 : http : statuscode: ‘202 Accepted ‘ :
262 The element has been accepted for processing .
263
264 . . note : :
265
266 This API is s t i l l experimental . The API will be further developed as needed .
267
268
269 """
270
271 return template
272
273
274
275 def doc_get(a):
276
277 w = a[0]
278
279 sc = a[2]
280 ssc = a[3]
281 kc = a[4]
282 cc = a[5]
283 s = a[6]
284 s_plur = a[7]
285 s_plur_caps = a[8]
286
287 addendum = ""
288
289 if kc == "bad-sig-losses":
290 addendum = """ : query operation : A string . I f specified , only returns el ig ible rows

with this : ts : type : ‘ BadSigLosses ‘ . operation value . The default value is NULL.
291 : query use_op_spec_pub : A boolean . I f true , use the value of : ts : type : ‘OpSpecPub‘ to

only return el ig ible rows with this : ts : type : ‘ BadSigLosses ‘ . operation_specific_pub
value . The default value is NULL.

292 """
293 if kc == "balances":
294 addendum = """ : query balance_key : a string identifying a balance . I f specified ,

only returns elements with this exact key . The default value is NULL.
295 """
296
297 s_len = len(f"{s_plur_caps}")
298 cov = "-" * s_len
299
300 tbl_con = ""
301

86

A. Appendices

302 for x in w:
303 tbl_con += "\n\t" + x + "␣:␣" + w[x] + ";\n"
304
305 template = f"""
306
307 . . { kc}− l i s t :
308
309 { s_plur_caps }
310 {cov}
311
312 This API is used to obtain a l i s t of { s_plur }
313
314 . . http : get : : / { kc }
315
316 Get a l i s t of { s_plur } stored by the auditor .
317
318 The following query parameters are optional , and can be used to customise the response :
319
320 **Request :**
321
322 : query l imi t : A signed integer , indicating how many elements relat ive to the offset

query parameter should be returned . The default value is −20.
323 : query offset : An unsigned integer , indicating from which row onward to return

elements . The default value is INT_MAX.
324 : query return_suppressed : A boolean . I f true , returns al l el ig ible rows, otherwise only

returns el ig ible rows that are not suppressed . The default value is false .
325 {addendum}
326
327 The default values , thus , return at max the 20 latest elements that are not suppressed .
328
329 **Response:**
330
331 : http : statuscode: ‘200 OK‘ :
332 The auditor responds with a top level array of : ts : type : ‘ { cc } ‘ objecs .
333
334 : http : statuscode: ‘403 Forbidden ‘ :
335 No or bad Bearer token provided .
336
337 : http : statuscode: ‘404 Not Found ‘ :
338 No elements could be found .
339
340 **Details : **
341
342 . . ts : def : : { cc }
343
344 interface { cc } { {
345
346 { tbl_con }
347
348 } }
349
350 . . note : :
351
352 This API is s t i l l experimental . The API will be further developed as needed .
353
354
355 """
356
357 return template
358
359
360 def main():

87

A. Appendices

361
362 f = open("doc.txt","w+")
363
364 f.write(dcm)
365
366 f.write(spa_api)
367
368 amalgamation = list()
369
370 directory = os.fsencode("sql")
371
372 for file in os.listdir(directory):
373
374
375
376 words = {}
377
378 name = os.fsdecode(file)
379 path = os.fsdecode(directory)
380
381 if name.find("DS_Store") != -1:
382 continue
383
384 nm = name.removesuffix(".sql")
385 comp = list(filter(lambda x: x != "0002-auditor",nm.split(’_’)))
386
387
388 sql = open(path + ’/’ + name, ’r’, encoding=’utf-8’, errors=’ignore’)
389
390 lines = sql.readlines()
391
392 i = 0
393 for line in lines:
394 #find point of interest
395 if (line.find("CREATE␣TABLE") < 0):
396 i += 1
397 continue
398 else:
399 i += 1
400 # skips one , but that is ok
401 exit = 0
402 for x in range(i,len(lines) - 1):
403 sql = lines[x]
404
405 if (sql.find(");") >= 0):
406 exit = 1
407
408 if (exit == 0):
409 sql = re.sub(r’[^\w\s]’, ’’, sql)
410
411 if (sql != ’\n’):
412
413 dingdong = sql.split(’␣’)
414
415 bloop = list(filter(lambda x: x != ’’,dingdong))
416
417 #print (bloop)
418
419 subst = repl(bloop[1].strip().lower())
420
421 if subst == "TODO":
422

88

A. Appendices

423 subst = guessBYTEA(bloop[0].strip().lower())
424
425 words[bloop[0].strip().lower()] = subst
426 else:
427 words[bloop[0].strip().lower()] = subst
428
429
430 sc = "_".join(comp)
431 ssc = "_".join(map(str.upper,comp))
432 kc = "-".join(comp)
433 cc = "".join(map(str.capitalize,comp))
434 s = "␣".join(comp)
435
436 for i, n in enumerate(comp):
437 if comp[i] == "inconsistency":
438 comp[i] = "inconsistencies"
439 if comp[i] == "emergency":
440 comp[i] = "emergencies"
441
442 s_plur = "␣".join(comp)
443 s_plur_caps = "␣".join(map(str.capitalize,comp))
444
445 tpl = (words, comp, sc, ssc, kc, cc, s, s_plur, s_plur_caps)
446
447 amalgamation.append(tpl)
448 f.write(doc_get(tpl))
449
450 f.write(doc_upd(tpl))
451
452 if (kc == "deposit-confirmations"):
453 f.write(dcm_del)
454
455 f.close()
456
457
458
459
460
461
462
463
464
465
466
467 if __name__ == "__main__":
468 main()� �� �
1 aggregation = ["coin_history",
2 "coin_deposits",
3 "refresh_commitments",
4 "purse_deposits",
5 "purse_decision",
6 "refunds",
7 "recoup_refresh",
8 "recoup",
9 "reserves_open_deposits",
10 "known_coins",
11
12 "batch_deposits",
13 "wire_targets",
14 "partners",
15 "purse_requests",

89

A. Appendices

16 "purse_decision",
17 "purse_deposits",
18 "coin_deposits",
19 "refresh_revealed_coins",
20 "reserves_out",
21 "reserves",
22 "refresh_commitments",
23 "recoup",
24 "recoup_refresh",
25 "coin_history",
26 "refunds",
27 "reserves_open_deposits",
28 "known_coins",
29
30 "aggregation_tracking",
31 "batch_deposits",
32 "coin_deposits",
33 "wire_targets",
34 "known_coins",
35
36 "wire_out",
37 "wire_out",
38 "wire_targets"
39]
40
41 coins = [
42 "denomination_revocations",
43
44 "known_coins",
45
46 "refresh_commitments",
47 "refresh_revealed_coins",
48
49 "purse_deposits",
50 "known_coins",
51
52 "auditor_denom_sigs",
53 "auditors",
54
55
56 "reserves_out",
57 "reserves",
58
59 "refunds",
60 "batch_deposits",
61 "coin_deposits",
62 "known_coins",
63
64 "purse_decision",
65 "purse_requests",
66 "purse_merges",
67 "recoup_refresh",
68 "refresh_revealed_coins",
69 "refresh_commitments",
70 "known_coins",
71
72 "recoup",
73 "known_coins",
74 "reserves_out",
75 "reserves",
76
77 "refresh_commitments",

90

A. Appendices

78 "known_coins",
79
80 "coin_deposits",
81 "batch_deposits",
82 "wire_targets",
83 "known_coins",
84
85 "purse_deposits",
86 "partners",
87 "purse_merges",
88 "purse_requests",
89 "known_coins",
90
91]
92
93 deposits = [
94 "coin_deposits",
95 "batch_deposits",
96 "known_coins",
97
98 "wire_targets"
99
100]
101
102
103 # auditor_purses has been deliberately removed
104 purses = [
105 "global_fee",
106 "purse_requests",
107 "purse_deposits",
108 "partners",
109 "purse_merges",
110 "purse_requests",
111 "known_coins",
112
113 "account_merges",
114 "purse_requests",
115 "purse_merges",
116 "purse_decision",
117 "purse_merges",
118 "purse_requests",
119 "partners"
120]
121
122 reserves = [
123 "denomination_revocations",
124
125 "wire_fee",
126 "reserves_in",
127 "reserves",
128 "wire_targets",
129 "reserves_out",
130 "reserves",
131
132 "recoup",
133 "known_coins",
134 "reserves_out",
135 "reserves",
136
137 "reserves_open_requests",
138 "reserves_close",
139 "wire_targets",

91

A. Appendices

140 "reserves",
141 "purse_decision",
142 "purse_requests",
143 "purse_merges",
144 "purse_requests",
145 "purse_merges"
146]
147
148 wire = [
149 "aggregation_tracking",
150 "profit_drains",
151 "wire_out",
152 "wire_targets",
153 "reserves_in",
154 "reserves",
155 "wire_targets",
156 "reserves_close",
157 "wire_targets",
158 "reserves"
159
160
161]
162
163
164 def main():
165 c = 0
166 for l in [(aggregation, "auditor_wake_aggregation_helper_trigger"), (coins,

"auditor_wake_coins_helper_trigger"), (purses,
"auditor_wake_purses_helper_trigger"), (deposits,
"auditor_wake_deposits_helper_trigger"), (reserves,
"auditor_wake_reserves_helper_trigger"),
(wire,"auditor_wake_wire_helper_trigger")]:

167
168 compr = list(set(l[0]))
169 i = 0
170
171 for tbl in compr:
172 str = f"""
173 CREATE OR REPLACE TRIGGER auditor_exchange_notify_helper_ { l [1] . sp l i t (" _ ") [2] } { i }
174 AFTER INSERT ON exchange . { tbl }
175 EXECUTE FUNCTION { l [1] } () ;
176 """
177
178 print(str)
179
180 i = i + 1
181
182 c = c + 1
183
184
185
186
187 if __name__ == "__main__":
188 main()� �� �
1 import time
2 import os
3 import re
4
5 license = """
6 /*
7 This f i l e is part of TALER

92

A. Appendices

8 Copyright (C) 2024 Taler Systems SA
9
10 TALER is free software ; you can redistr ibute i t and/ or modify i t under the
11 terms of the GNU General Public License as published by the Free Software
12 Foundation ; either version 3, or (at your option) any later version .
13
14 TALER is distributed in the hope that i t will be useful , but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
16 A PARTICULAR PURPOSE. See the GNU General Public License for more details .
17
18 You should have received a copy of the GNU General Public License along with
19 TALER; see the f i l e COPYING. I f not , see <http : / /www.gnu . org / licenses />
20 */
21 """
22
23
24 pack_json = {
25 "bigint" : "GNUNET_JSON_pack_int64",
26 "integer" : "GNUNET_JSON_pack_int64",
27 "int8" : "GNUNET_JSON_pack_int32",
28 "bytea" : "GNUNET_JSON_pack_data_auto",
29 "taler_amount" : "TALER_JSON_pack_amount",
30 "boolean" : "GNUNET_JSON_pack_bool",
31 "varchar" : "GNUNET_JSON_pack_string",
32 "text" : "GNUNET_JSON_pack_string"
33 }
34
35 def pkjs(param, t):
36
37 pr = pack_json[t]
38
39 match t:
40 case "taler_amount":
41 return pr + f"(\"{param}\",␣&dc->{param})"
42
43 return pr + f"(\"{param}\",␣dc->{param})"
44
45 #this amount needs three arguments
46 spec_json = {
47
48 "bigint" : "GNUNET_JSON_spec_int64",
49 "integer" : "GNUNET_JSON_spec_int64",
50 "int8" : "GNUNET_JSON_spec_int32",
51 "bytea" : "GNUNET_JSON_spec_fixed_auto",
52 "taler_amount" : "TALER_JSON_spec_amount",
53 "boolean" : "GNUNET_JSON_spec_bool",
54 "varchar" : "GNUNET_JSON_spec_string",
55 "text" : "GNUNET_JSON_spec_string"
56
57 }
58
59 def spjs(param, t):
60
61 pr = spec_json[t]
62
63 match t:
64 case "taler_amount":
65 return pr + f"(\"{param}\",␣TAH_currency,␣&dc.{param})"
66 case "varchar":
67 return pr + f"(\"{param}\",␣(const␣char␣**)␣&dc.{param})"
68
69 return pr + f"(\"{param}\",␣&dc.{param})"

93

A. Appendices

70
71 spec_pq = {
72
73 "bigint" : "GNUNET_PQ_result_spec_int64",
74 "integer" : "GNUNET_PQ_result_spec_int64",
75 "int8" : "GNUNET_PQ_result_spec_int32",
76 "bytea" : "GNUNET_PQ_result_spec_auto_from_type",
77 "taler_amount" : "TALER_PQ_RESULT_SPEC_AMOUNT",
78 "boolean" : "GNUNET_PQ_result_spec_bool",
79 "varchar" : "GNUNET_PQ_result_spec_string",
80 "text" : "GNUNET_PQ_result_spec_string"
81
82 }
83
84 def sppq(param, t):
85
86 pr = spec_pq[t]
87
88 return pr + f"(\"{param}\",␣␣&dc.{param})"
89
90 query_pq = {
91
92 "bigint" : "GNUNET_PQ_query_param_int64",
93 "integer" : "GNUNET_PQ_query_param_int64",
94 "int8" : "GNUNET_PQ_query_param_int32",
95 "bytea" : "GNUNET_PQ_query_param_auto_from_type",
96 "taler_amount" : "TALER_PQ_query_param_amount",
97 "boolean" : "GNUNET_PQ_query_param_bool",
98 "varchar" : "GNUNET_PQ_query_param_string",
99 "text" : "GNUNET_PQ_query_param_string"
100
101 }
102
103 def qupq(param, t):
104
105 pr = query_pq[t]
106
107 match t:
108 case "string":
109 return pr + f"(dc->{param})"
110 case "boolean":
111 return pr + f"(dc->{param})"
112 case "taler_amount":
113 return pr + f"(pg->conn,␣&dc->{param})"
114 case "bytea":
115 return pr + f"(&dc->{param})"
116
117 return pr + f"(&dc->{param})"
118
119
120 c_types = {
121
122 "bigint" : "int64_t",
123 "integer" : "int64_t",
124 "int8" : "int32_t",
125 "bytea" : "TYPE",
126 "taler_amount" : "struct␣TALER_Amount",
127 "boolean" : "bool",
128 "varchar" : "char␣*",
129 "text" : "char␣*"
130
131 }

94

A. Appendices

132
133
134
135
136
137 def taler_auditor_httpd_xyz_put_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
138
139 ret = f"""
140 { license }
141
142
143 #include "platform .h"
144 #include <gnunet / gnunet_util_lib . h>
145 #include <gnunet / gnunet_json_lib . h>
146 #include <jansson .h>
147 #include <microhttpd .h>
148 #include <pthread .h>
149 #include " taler_json_lib .h"
150 #include "taler_mhd_lib .h"
151 #include " taler−auditor−httpd .h"
152 #include " taler−auditor−httpd_{kebab_case}−put .h"
153
154 /**
155 * We have parsed the JSON information about the {kebab_case} , do some
156 * basic sanity checks and then execute the
157 * transaction .
158 *
159 * @param connection the MHD connection to handle
160 * @param dc information about the {kebab_case}
161 * @return MHD result code
162 */
163 stat ic MHD_RESULT
164 process_inconsistency (
165 struct MHD_Connection *connection ,
166 const struct TALER_AUDITORDB_{camelCase} *dc)
167 { {
168
169 enum GNUNET_DB_QueryStatus qs ;
170
171 i f (GNUNET_SYSERR ==
172 TAH_plugin−>prefl ight (TAH_plugin−>cls))
173 { {
174 GNUNET_break (0) ;
175 return TALER_MHD_reply_with_error (connection ,
176 MHD_HTTP_INTERNAL_SERVER_ERROR,
177 TALER_EC_GENERIC_DB_SETUP_FAILED,
178 NULL) ;
179 } }
180
181 /* execute transaction */
182 qs = TAH_plugin−>insert_ {snake_case} (TAH_plugin−>cls ,
183 dc) ;
184 i f (0 > qs)
185 { {
186 GNUNET_break (GNUNET_DB_STATUS_HARD_ERROR == qs) ;
187 TALER_LOG_WARNING (
188 "Failed to store / { kebab_case} in database \n") ;
189 return TALER_MHD_reply_with_error (connection ,
190 MHD_HTTP_INTERNAL_SERVER_ERROR,
191 TALER_EC_GENERIC_DB_STORE_FAILED,
192 "{kebab_case } ") ;

95

A. Appendices

193 } }
194 return TALER_MHD_REPLY_JSON_PACK (connection ,
195 MHD_HTTP_OK,
196 GNUNET_JSON_pack_string (" status " , "{screaming_snake_case}_OK")) ;
197 } }
198
199
200 MHD_RESULT
201 TAH_{screaming_snake_case}_handler_put (
202 struct TAH_RequestHandler *rh ,
203 struct MHD_Connection *connection ,
204 void **connection_cls ,
205 const char *upload_data ,
206 size_t *upload_data_size ,
207 const char *const args [])
208 { {
209
210 struct TALER_AUDITORDB_{camelCase} dc ;
211
212
213 struct GNUNET_JSON_Specification spec [] = { {
214
215 { pl }
216
217 GNUNET_JSON_spec_end ()
218 } } ;
219
220
221 json_t *json ;
222
223 (void) rh ;
224 (void) connection_cls ;
225 (void) upload_data ;
226 (void) upload_data_size ;
227 { {
228 enum GNUNET_GenericReturnValue res ;
229
230 res = TALER_MHD_parse_post_json (connection ,
231 connection_cls ,
232 upload_data ,
233 upload_data_size ,
234 &json) ;
235 i f (GNUNET_SYSERR == res)
236 return MHD_NO;
237 i f ((GNUNET_NO == res) | |
238 (NULL == json))
239 return MHD_YES;
240 res = TALER_MHD_parse_json_data (connection ,
241 json ,
242 spec) ;
243 i f (GNUNET_SYSERR == res)
244 { {
245 json_decref (json) ;
246 return MHD_NO; /* hard fa i lure */
247 } }
248 i f (GNUNET_NO == res)
249 { {
250 json_decref (json) ;
251 return MHD_YES; /* fa i lure */
252 } }
253 } }
254

96

A. Appendices

255 MHD_RESULT res ;
256
257 res = process_inconsistency (connection , &dc) ;
258 GNUNET_JSON_parse_free (spec) ;
259
260 json_decref (json) ;
261 return res ;
262
263 } }
264
265
266 void
267 TEAH_{screaming_snake_case}_PUT_init (void)
268 { {
269
270 } }
271
272
273 void
274 TEAH_{screaming_snake_case}_PUT_done (void)
275 { {
276
277 } }
278
279 """
280
281 return ret
282
283 def taler_auditor_httpd_xyz_put_h_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
284
285 ret = f"""
286
287 { license }
288
289 #ifndef SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
290 #define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
291
292 #include <microhttpd .h>
293 #include " taler−auditor−httpd .h"
294
295 /**
296 * I n i t i a l i z e subsystem .
297 */
298 void
299 TEAH_BAD_{screaming_snake_case} _ in i t (void) ;
300
301 /**
302 * Shut down subsystem .
303 */
304 void
305 TEAH_BAD_{screaming_snake_case}_done (void) ;
306
307
308 /**
309 * Handle a " / { kebab_case}" request . Parses the JSON, and, i f
310 * successful , checks the signatures and stores the result in the DB.
311 *
312 * @param rh context of the handler
313 * @param connection the MHD connection to handle
314 * @param[in , out] connection_cls the connection ’s closure (can be updated)
315 * @param upload_data upload data

97

A. Appendices

316 * @param[in , out] upload_data_size number of bytes (le f t) in @a upload_data
317 * @return MHD result code
318 */
319 MHD_RESULT
320 TAH_{screaming_snake_case}_PUT_handler (struct TAH_RequestHandler *rh ,
321 struct MHD_Connection *
322 connection ,
323 void **connection_cls ,
324 const char *upload_data ,
325 size_t *upload_data_size ,
326 const char *const args []) ;
327
328
329 #endif / / SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
330
331 """
332
333
334 return ret
335
336 def taler_auditor_httpd_xyz_get_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
337
338 ret = f"""
339
340 { license }
341
342
343 #include "platform .h"
344 #include <gnunet / gnunet_util_lib . h>
345 #include <gnunet / gnunet_json_lib . h>
346 #include <jansson .h>
347 #include <microhttpd .h>
348 #include <pthread .h>
349 #include " taler_json_lib .h"
350 #include "taler_mhd_lib .h"
351 #include " taler−auditor−httpd .h"
352 #include " taler−auditor−httpd_{kebab_case}−get .h"
353
354 /**
355 * Add {kebab_case} to the l i s t .
356 *
357 * @param[in , out] cls a ‘ json_t * ‘ array to extend
358 * @param serial_ id location of the @a dc in the database
359 * @param dc struct of inconsistencies
360 * @return #GNUNET_OK to continue to iterate , #GNUNET_SYSERR to stop iterat ing
361 */
362 stat ic enum GNUNET_GenericReturnValue
363 process_{kebab_case} (void *cls ,
364 uint64_t serial_id ,
365 const struct
366 TALER_AUDITORDB_{camelCase}
367 *dc)
368 { {
369 json_t * l i s t = cls ;
370 json_t *obj ;
371
372 obj = GNUNET_JSON_PACK (
373
374 { pl }
375
376) ;

98

A. Appendices

377 GNUNET_break (0 ==
378 json_array_append_new (l i s t ,
379 obj)) ;
380
381
382 return GNUNET_OK;
383 } }
384
385
386 /**
387 *
388 * @param rh context of the handler
389 * @param connection the MHD connection to handle
390 * @param[in , out] connection_cls the connection ’s closure (can be updated)
391 * @param upload_data upload data
392 * @param[in , out] upload_data_size number of bytes (le f t) in @a upload_data
393 * @return MHD result code
394 */
395 MHD_RESULT
396 TAH_{screaming_snake_case}_handler_get (struct TAH_RequestHandler *rh ,
397 struct MHD_Connection *
398 connection ,
399 void **connection_cls ,
400 const char *upload_data ,
401 size_t *upload_data_size ,
402 const char *const args [])
403 { {
404 json_t * ja ;
405 enum GNUNET_DB_QueryStatus qs ;
406
407 (void) rh ;
408 (void) connection_cls ;
409 (void) upload_data ;
410 (void) upload_data_size ;
411 i f (GNUNET_SYSERR ==
412 TAH_plugin−>prefl ight (TAH_plugin−>cls))
413 { {
414 GNUNET_break (0) ;
415 return TALER_MHD_reply_with_error (connection ,
416 MHD_HTTP_INTERNAL_SERVER_ERROR,
417 TALER_EC_GENERIC_DB_SETUP_FAILED,
418 NULL) ;
419 } }
420 ja = json_array () ;
421 GNUNET_break (NULL != ja) ;
422
423 int64_t l imi t = −20;
424 uint64_t offset ;
425
426 TALER_MHD_parse_request_snumber (connection ,
427 " l imi t " ,
428 &l imit) ;
429
430 i f (l imi t < 0)
431 offset = INT64_MAX;
432 else
433 offset = 0;
434
435 TALER_MHD_parse_request_number (connection ,
436 " offset " ,
437 &offset) ;
438

99

A. Appendices

439 bool return_suppressed = false ;
440
441 struct GNUNET_JSON_Specification spec [] = { {
442 GNUNET_JSON_spec_bool (" return_suppressed " , &return_suppressed) ,
443 GNUNET_JSON_spec_end ()
444 } } ;
445
446 / / read the input json
447 json_t * json_in ;
448 { {
449 enum GNUNET_GenericReturnValue res ;
450
451 res = TALER_MHD_parse_post_json (connection ,
452 connection_cls ,
453 upload_data ,
454 upload_data_size ,
455 &json_in) ;
456 i f (GNUNET_SYSERR == res)
457 return MHD_NO;
458 i f ((GNUNET_NO == res) | |
459 (NULL == json_in))
460 return MHD_YES;
461 res = TALER_MHD_parse_json_data (connection ,
462 json_in ,
463 spec) ;
464 i f (GNUNET_SYSERR == res)
465 { {
466 json_decref (json_in) ;
467 return MHD_NO; /* hard fa i lure */
468 } }
469 i f (GNUNET_NO == res)
470 { {
471 json_decref (json_in) ;
472 return MHD_YES; /* fa i lure */
473 } }
474 } }
475
476 qs = TAH_plugin−>get_{snake_case} (
477 TAH_plugin−>cls ,
478 l imit ,
479 offset ,
480 return_suppressed ,
481 &process_{snake_case } ,
482 ja) ;
483
484 i f (0 > qs)
485 { {
486 GNUNET_break (GNUNET_DB_STATUS_HARD_ERROR == qs) ;
487 json_decref (ja) ;
488 TALER_LOG_WARNING (
489 "Failed to handle GET / { kebab_case } \n") ;
490 return TALER_MHD_reply_with_error (connection ,
491 MHD_HTTP_INTERNAL_SERVER_ERROR,
492 TALER_EC_GENERIC_DB_FETCH_FAILED,
493 "{kebab_case } ") ;
494 } }
495 return TALER_MHD_REPLY_JSON_PACK (
496 connection ,
497 MHD_HTTP_OK,
498 GNUNET_JSON_pack_array_steal (" { kebab_case } " ,
499 ja)) ;
500 } }

100

A. Appendices

501
502
503 """
504
505 return ret
506
507 def taler_auditor_httpd_xyz_get_h_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
508
509 ret = f"""
510
511 { license }
512
513 #ifndef SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_GET_H
514 #define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_GET_H
515
516 #include <gnunet / gnunet_util_lib . h>
517 #include <microhttpd .h>
518 #include " taler−auditor−httpd .h"
519
520 /**
521 * I n i t i a l i z e subsystem .
522 */
523 void
524 TEAH_{screaming_snake_case}_GET_init (void) ;
525
526 /**
527 * Shut down subsystem .
528 */
529 void
530 TEAH_BAD_{screaming_snake_case}_GET_done (void) ;
531
532 /**
533 * Handle a " / { kebab_case}" request .
534 *
535 * @param rh context of the handler
536 * @param connection the MHD connection to handle
537 * @param[in , out] connection_cls the connection ’s closure (can be updated)
538 * @param upload_data upload data
539 * @param[in , out] upload_data_size number of bytes (le f t) in @a upload_data
540 * @return MHD result code
541 */
542 MHD_RESULT
543 TAH_{screaming_snake_case}_handler_get (struct TAH_RequestHandler *rh ,
544 struct MHD_Connection *
545 connection ,
546 void **connection_cls ,
547 const char *upload_data ,
548 size_t *upload_data_size ,
549 const char *const args []) ;
550
551
552 #endif / / SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_GET_H
553
554
555 """
556
557 return ret
558
559 def taler_auditor_httpd_xyz_del_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
560

101

A. Appendices

561 ret = f"""
562
563 { license }
564
565 #include " taler−auditor−httpd_{kebab_case}−del .h"
566
567
568 MHD_RESULT
569 TAH_{screaming_snake_case}_handler_delete (struct TAH_RequestHandler *rh ,
570 struct MHD_Connection *
571 connection ,
572 void **connection_cls ,
573 const char *upload_data ,
574 size_t *upload_data_size ,
575 const char *const args [])
576 { {
577
578 MHD_RESULT res ;
579 enum GNUNET_DB_QueryStatus qs ;
580
581 uint64_t row_id ;
582
583 i f (args [1] != NULL)
584 row_id = atoi (args [1]) ;
585 else
586 return TALER_MHD_reply_with_error (connection ,
587 MHD_HTTP_BAD_REQUEST,
588 / / TODO: not the correct ec
589 TALER_EC_AUDITOR_DEPOSIT_CONFIRMATION_SIGNATURE_INVALID,
590 "exchange signature invalid ") ;
591
592 i f (GNUNET_SYSERR ==
593 TAH_plugin−>prefl ight (TAH_plugin−>cls))
594 { {
595 GNUNET_break (0) ;
596 return TALER_MHD_reply_with_error (connection ,
597 MHD_HTTP_INTERNAL_SERVER_ERROR,
598 TALER_EC_GENERIC_DB_SETUP_FAILED,
599 NULL) ;
600 } }
601
602
603 / / execute the transaction
604 qs = TAH_plugin−>delete_ {snake_case} (TAH_plugin−>cls ,
605 row_id) ;
606
607 i f (0 == qs)
608 { {
609 / / goes in here i f there was an error with the transaction
610 GNUNET_break (GNUNET_DB_STATUS_HARD_ERROR == qs) ;
611 TALER_LOG_WARNING (
612 "Failed to handle DELETE / { kebab_case } / %s" ,
613 args [1]) ;
614 return TALER_MHD_reply_with_error (connection ,
615 MHD_HTTP_NOT_FOUND,
616 / / TODO: not the correct ec
617 TALER_EC_AUDITOR_DEPOSIT_CONFIRMATION_SIGNATURE_INVALID,
618 "exchange signature invalid ") ;
619
620 } }
621
622 / / on success?

102

A. Appendices

623 return TALER_MHD_REPLY_JSON_PACK (connection ,
624 MHD_HTTP_NO_CONTENT,
625 GNUNET_JSON_pack_string (" status " ,
626 "{screaming_snake_case}_OK")) ;
627
628 return res ;
629 } }
630
631 """
632
633 return ret
634
635 def taler_auditor_httpd_xyz_del_h_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
636
637 ret = f"""
638
639 { license }
640
641 #ifndef SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_DEL_H
642 #define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_DEL_H
643
644
645 #include <microhttpd .h>
646 #include " taler−auditor−httpd .h"
647
648 /**
649 * I n i t i a l i z e subsystem .
650 */
651 void
652 TEAH_{screaming_snake_case}_DELETE_init (void) ;
653
654 /**
655 * Shut down subsystem .
656 */
657 void
658 TEAH_{screaming_snake_case}_DELETE_done (void) ;
659
660 /**
661 * Handle a " / { kebab_case}" request . Parses the JSON, and, i f
662 * successful , checks the signatures and stores the result in the DB.
663 *
664 * @param rh context of the handler
665 * @param connection the MHD connection to handle
666 * @param[in , out] connection_cls the connection ’s closure (can be updated)
667 * @param upload_data upload data
668 * @param[in , out] upload_data_size number of bytes (le f t) in @a upload_data
669 * @return MHD result code
670 */
671 MHD_RESULT
672 TAH_{screaming_snake_case}_handler_delete (struct TAH_RequestHandler *rh ,
673 struct MHD_Connection *
674 connection ,
675 void **connection_cls ,
676 const char *upload_data ,
677 size_t *upload_data_size ,
678 const char *const args []) ;
679
680
681 #endif / / SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_DEL_H
682
683

103

A. Appendices

684 """
685
686 return ret
687
688 def taler_auditor_httpd_xyz_upd_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
689
690 ret = f"""
691
692 { license }
693
694 #include "platform .h"
695 #include <gnunet / gnunet_util_lib . h>
696 #include <gnunet / gnunet_json_lib . h>
697 #include <jansson .h>
698 #include <microhttpd .h>
699 #include <pthread .h>
700 #include " taler_json_lib .h"
701 #include "taler_mhd_lib .h"
702 #include " taler−auditor−httpd .h"
703 #include " taler−auditor−httpd_{kebab_case}−upd.h"
704
705 MHD_RESULT
706 TAH_{screaming_snake_case}_handler_update (
707 struct TAH_RequestHandler *rh ,
708 struct MHD_Connection *connection ,
709 void **connection_cls ,
710 const char *upload_data ,
711 size_t *upload_data_size ,
712 const char *const args [])
713 { {
714 enum GNUNET_DB_QueryStatus qs ;
715
716 i f (GNUNET_SYSERR ==
717 TAH_plugin−>prefl ight (TAH_plugin−>cls))
718 { {
719 GNUNET_break (0) ;
720 return TALER_MHD_reply_with_error (connection ,
721 MHD_HTTP_INTERNAL_SERVER_ERROR,
722 TALER_EC_GENERIC_DB_SETUP_FAILED,
723 NULL) ;
724 } }
725
726 struct TALER_AUDITORDB_Generic_Update gu ;
727
728 struct GNUNET_JSON_Specification spec [] = { {
729
730 GNUNET_JSON_spec_uint64 (" row_id" , &gu . row_id) ,
731 GNUNET_JSON_spec_bool (" suppressed" , &gu . suppressed) ,
732
733 GNUNET_JSON_spec_end ()
734 } } ;
735
736 json_t *json ;
737
738 (void) rh ;
739 (void) connection_cls ;
740 (void) upload_data ;
741 (void) upload_data_size ;
742 { {
743 enum GNUNET_GenericReturnValue res ;
744

104

A. Appendices

745 res = TALER_MHD_parse_post_json (connection ,
746 connection_cls ,
747 upload_data ,
748 upload_data_size ,
749 &json) ;
750 i f (GNUNET_SYSERR == res)
751 return MHD_NO;
752 i f ((GNUNET_NO == res) | |
753 (NULL == json))
754 return MHD_YES;
755 res = TALER_MHD_parse_json_data (connection ,
756 json ,
757 spec) ;
758 i f (GNUNET_SYSERR == res)
759 { {
760 json_decref (json) ;
761 return MHD_NO; /* hard fa i lure */
762 } }
763 i f (GNUNET_NO == res)
764 { {
765 json_decref (json) ;
766 return MHD_YES; /* fa i lure */
767 } }
768 } }
769
770 /* execute transaction */
771 qs = TAH_plugin−>update_{snake_case} (TAH_plugin−>cls , &gu) ;
772
773 GNUNET_JSON_parse_free (spec) ;
774 json_decref (json) ;
775
776 MHD_RESULT ret = MHD_NO;
777
778 switch (qs)
779 { {
780 case GNUNET_DB_STATUS_HARD_ERROR:
781 GNUNET_break (0) ;
782 ret = TALER_MHD_reply_with_error (connection ,
783 MHD_HTTP_INTERNAL_SERVER_ERROR,
784 TALER_EC_GENERIC_DB_STORE_FAILED,
785 "update_account ") ;
786 break ;
787 case GNUNET_DB_STATUS_SOFT_ERROR:
788 GNUNET_break (0) ;
789 ret = TALER_MHD_reply_with_error (connection ,
790 MHD_HTTP_INTERNAL_SERVER_ERROR,
791 TALER_EC_GENERIC_INTERNAL_INVARIANT_FAILURE,
792 "unexpected ser ia l izat ion problem") ;
793 break ;
794 case GNUNET_DB_STATUS_SUCCESS_NO_RESULTS:
795 return TALER_MHD_reply_with_error (connection ,
796 MHD_HTTP_NOT_FOUND,
797 TALER_EC_MERCHANT_GENERIC_ACCOUNT_UNKNOWN,
798 "no updates executed") ;
799 break ;
800 case GNUNET_DB_STATUS_SUCCESS_ONE_RESULT:
801 ret = TALER_MHD_reply_static (connection ,
802 MHD_HTTP_NO_CONTENT,
803 NULL,
804 NULL,
805 0) ;
806 break ;

105

A. Appendices

807 } }
808
809 return ret ;
810 } }
811
812 """
813
814 return ret
815
816 def taler_auditor_httpd_xyz_upd_h_new(snake_case, screaming_snake_case, kebab_case,

camelCase, pl):
817 ret = f"""
818
819 { license }
820
821 #ifndef SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
822 #define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
823
824
825 #include <microhttpd .h>
826 #include " taler−auditor−httpd .h"
827
828 MHD_RESULT
829 TAH_{screaming_snake_case}_handler_update (struct TAH_RequestHandler *rh ,
830 struct MHD_Connection *
831 connection ,
832 void **connection_cls ,
833 const char *upload_data ,
834 size_t *upload_data_size ,
835 const char *const args []) ;
836
837 #endif / / SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
838
839
840 """
841 return ret
842
843 def httpd(words, comp):
844
845 pl = ""
846 for w in words.items():
847 pl += spjs(w[0], w[1]) + ",\n"
848
849 sc = "_".join(comp)
850 ssc = "_".join(map(str.upper,comp))
851 kc = "-".join(comp)
852 cc = "".join(map(str.capitalize,comp))
853
854 p = taler_auditor_httpd_xyz_put_new(sc,ssc,kc,cc,pl)
855
856 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-put.c","w+")
857 f.write(p)
858 f.close()
859
860 p = taler_auditor_httpd_xyz_put_h_new(sc,ssc,kc,cc,pl)
861
862 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-put.h","w+")
863 f.write(p)
864 f.close()
865
866 pl = ""
867 for w in words.items():

106

A. Appendices

868 pl += pkjs(w[0], w[1]) + ",\n"
869
870 p = taler_auditor_httpd_xyz_get_new(sc,ssc,kc,cc,pl)
871
872 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-get.c","w+")
873 f.write(p)
874 f.close()
875
876 p = taler_auditor_httpd_xyz_get_h_new(sc,ssc,kc,cc,pl)
877
878 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-get.h","w+")
879 f.write(p)
880 f.close()
881
882 p = taler_auditor_httpd_xyz_del_new(sc,ssc,kc,cc,pl)
883
884 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-del.c","w+")
885 f.write(p)
886 f.close()
887
888 p = taler_auditor_httpd_xyz_del_h_new(sc,ssc,kc,cc,pl)
889
890 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-del.h","w+")
891 f.write(p)
892 f.close()
893
894 p = taler_auditor_httpd_xyz_upd_new(sc,ssc,kc,cc,pl)
895
896 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-upd.c","w+")
897 f.write(p)
898 f.close()
899
900 p = taler_auditor_httpd_xyz_upd_h_new(sc,ssc,kc,cc,pl)
901
902 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-upd.h","w+")
903 f.write(p)
904 f.close()
905
906
907
908 def pg_del(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
909
910 ret = f"""
911
912 { license }
913
914 #include "pg_del_{snake_case } . h"
915
916 #include " taler_pq_lib .h"
917 #include "pg_helper .h"
918
919 enum GNUNET_DB_QueryStatus
920 TAH_PG_del_{snake_case} (
921 void *cls ,
922 uint64_t row_id)
923 { {
924 struct PostgresClosure *pg = cls ;
925 struct GNUNET_PQ_QueryParam params[] = { {
926 GNUNET_PQ_query_param_uint64 (&row_id) ,
927 GNUNET_PQ_query_param_end
928 } } ;
929

107

A. Appendices

930 PREPARE (pg,
931 "auditor_delete_ {snake_case } " ,
932 "DELETE"
933 " FROM auditor_ {snake_case}"
934 " WHERE row_id=$1; ") ;
935 return GNUNET_PQ_eval_prepared_non_select (pg−>conn ,
936 "auditor_delete_ {snake_case } " ,
937 params) ;
938 } }
939
940 """
941
942 return ret
943
944 def pg_del_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
945 ret = f"""
946
947 { license }
948
949 #ifndef SRC_PG_DEL_{screaming_snake_case}_H
950 #define SRC_PG_DEL_{screaming_snake_case}_H
951
952 #include " ta ler_ut i l . h"
953 #include " taler_auditordb_plugin .h"
954
955 /**
956 * Delete a row from the bad sig losses table .
957 *
958 * @param cls the @e cls of this struct with the plugin−specif ic state
959 * @param row_id row to delete
960 * @return query transaction status
961 */
962 enum GNUNET_DB_QueryStatus
963 TAH_PG_del_{snake_case} (
964 void *cls ,
965 uint64_t row_id) ;
966
967 #endif / / SRC_PG_DEL_{screaming_snake_case}_H
968
969
970 """
971
972 return ret
973
974 def pg_upd(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
975
976 ret = f"""
977
978 { license }
979
980 #include "platform .h"
981 #include " taler_pq_lib .h"
982 #include "pg_helper .h"
983
984 #include "pg_update_{snake_case } . h"
985
986 /*
987 Update a given resource for now this only means suppressing
988 */
989 enum GNUNET_DB_QueryStatus
990 TAH_PG_update_{snake_case} (
991 void *cls ,

108

A. Appendices

992 const struct TALER_AUDITORDB_Generic_Update *gu)
993 { {
994 struct PostgresClosure *pg = cls ;
995 struct GNUNET_PQ_QueryParam params[] = { {
996 GNUNET_PQ_query_param_uint64 (&gu−>row_id) ,
997 GNUNET_PQ_query_param_bool (gu−>suppressed) ,
998 GNUNET_PQ_query_param_end
999 } } ;
1000
1001
1002 PREPARE (pg,
1003 "update_{snake_case } " ,
1004 "UPDATE auditor_ {snake_case} SET"
1005 " suppressed=$2"
1006 " WHERE row_id=$1") ;
1007 return GNUNET_PQ_eval_prepared_non_select (pg−>conn ,
1008 "update_{snake_case } " ,
1009 params) ;
1010 } }
1011
1012
1013 """
1014
1015 return ret
1016
1017 def pg_upd_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
1018
1019 ret = f"""
1020
1021 { license }
1022
1023 #ifndef SRC_PG_UPDATE_{screaming_snake_case}_H
1024 #define SRC_PG_UPDATE_{screaming_snake_case}_H
1025
1026 #include " ta ler_ut i l . h"
1027 #include " taler_auditordb_plugin .h"
1028
1029 enum GNUNET_DB_QueryStatus
1030 TAH_PG_update_{snake_case} (
1031 void *cls ,
1032 const struct TALER_AUDITORDB_Generic_Update *dc) ;
1033
1034 #endif / / SRC_PG_UPDATE_{screaming_snake_case}_H
1035
1036
1037 """
1038
1039 return ret
1040
1041 def pg_insert(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1042
1043 ret = f"""
1044
1045 { license }
1046
1047 #include "platform .h"
1048 #include " taler_pq_lib .h"
1049 #include "pg_helper .h"
1050
1051 #include "pg_insert_ {snake_case } . h"
1052
1053 enum GNUNET_DB_QueryStatus

109

A. Appendices

1054 TAH_PG_insert_{snake_case} (
1055 void *cls ,
1056 const struct TALER_AUDITORDB_{camelCase} *dc)
1057 { {
1058 struct PostgresClosure *pg = cls ;
1059 struct GNUNET_PQ_QueryParam params[] = { {
1060
1061 { pl }
1062
1063 GNUNET_PQ_query_param_end
1064 } } ;
1065
1066 PREPARE (pg,
1067 "auditor_ {snake_case} _insert " ,
1068 "INSERT INTO auditor_ {snake_case} "
1069 { sql_i }
1070) ;
1071 return GNUNET_PQ_eval_prepared_non_select (pg−>conn ,
1072 "auditor_ {snake_case} _insert " ,
1073 params) ;
1074 } }
1075
1076 """
1077
1078 return ret
1079
1080 def pg_insert_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1081
1082 ret = f"""
1083
1084 { license }
1085
1086
1087
1088 #ifndef SRC_PG_INSERT_{screaming_snake_case}_H
1089 #define SRC_PG_INSERT_{screaming_snake_case}_H
1090
1091 #include " ta ler_ut i l . h"
1092 #include " taler_auditordb_plugin .h"
1093
1094
1095 /**
1096 * Insert information about a bad sig loss into the database .
1097 *
1098 * @param cls the @e cls of this struct with the plugin−specif ic state
1099 * @param dc deposit confirmation information to store
1100 * @return query result status
1101 */
1102 enum GNUNET_DB_QueryStatus
1103 TAH_PG_insert_{snake_case} (
1104 void *cls ,
1105 const struct TALER_AUDITORDB_{camelCase} *dc) ;
1106
1107 #endif / / SRC_PG_INSERT_{screaming_snake_case}_H
1108
1109
1110 """
1111
1112 return ret
1113
1114 def pg_get(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1115

110

A. Appendices

1116 ret = f"""
1117
1118 { license }
1119
1120 #include "platform .h"
1121 #include " taler_error_codes .h"
1122 #include "taler_dbevents .h"
1123 #include " taler_pq_lib .h"
1124 #include "pg_helper .h"
1125
1126 #include "pg_get_{snake_case } . h"
1127
1128
1129 struct {camelCase}Context
1130 { {
1131
1132 /**
1133 * Function to cal l for each bad sig loss .
1134 */
1135 TALER_AUDITORDB_{camelCase}Callback cb ;
1136
1137 /**
1138 * Closure for @e cb
1139 */
1140 void *cb_cls ;
1141
1142 /**
1143 * Plugin context .
1144 */
1145 struct PostgresClosure *pg;
1146
1147 /**
1148 * Query status to return .
1149 */
1150 enum GNUNET_DB_QueryStatus qs ;
1151 } } ;
1152
1153
1154 /**
1155 * Helper function for #TAH_PG_get_{snake_case } () .
1156 * To be called with the results of a SELECT statement
1157 * that has returned @a num_results results .
1158 *
1159 * @param cls closure of type ‘ struct {camelCase}Context * ‘
1160 * @param result the postgres result
1161 * @param num_results the number of results in @a result
1162 */
1163 stat ic void
1164 {snake_case}_cb (void *cls ,
1165 PGresult * result ,
1166 unsigned int num_results)
1167 { {
1168 struct {camelCase}Context *dcc = cls ;
1169 struct PostgresClosure *pg = dcc−>pg;
1170
1171 for (unsigned int i = 0; i < num_results ; i ++)
1172 { {
1173 uint64_t ser ial_ id ;
1174
1175 struct TALER_AUDITORDB_{camelCase} dc ;
1176
1177 struct GNUNET_PQ_ResultSpec rs [] = { {

111

A. Appendices

1178
1179 GNUNET_PQ_result_spec_uint64 (" row_id" , &ser ial_ id) ,
1180
1181 { pl }
1182
1183 GNUNET_PQ_result_spec_end
1184 } } ;
1185 enum GNUNET_GenericReturnValue rval ;
1186
1187 i f (GNUNET_OK !=
1188 GNUNET_PQ_extract_result (result ,
1189 rs ,
1190 i))
1191 { {
1192 GNUNET_break (0) ;
1193 dcc−>qs = GNUNET_DB_STATUS_HARD_ERROR;
1194 return ;
1195 } }
1196
1197 dcc−>qs = i + 1;
1198
1199 rval = dcc−>cb (dcc−>cb_cls ,
1200 serial_id ,
1201 &dc) ;
1202 GNUNET_PQ_cleanup_result (rs) ;
1203 i f (GNUNET_OK != rval)
1204 break ;
1205 } }
1206 } }
1207
1208
1209 enum GNUNET_DB_QueryStatus
1210 TAH_PG_get_{snake_case} (
1211 void *cls ,
1212 int64_t l imit ,
1213 uint64_t offset ,
1214 bool return_suppressed , / / maybe not needed
1215 TALER_AUDITORDB_{camelCase}Callback cb ,
1216 void *cb_cls)
1217 { {
1218
1219 struct PostgresClosure *pg = cls ;
1220 struct GNUNET_PQ_QueryParam params[] = { {
1221 GNUNET_PQ_query_param_uint64 (&offset) ,
1222 GNUNET_PQ_query_param_bool (return_suppressed) ,
1223 GNUNET_PQ_query_param_int64 (& l imi t) ,
1224 GNUNET_PQ_query_param_end
1225 } } ;
1226 struct {camelCase}Context dcc = { {
1227 . cb = cb ,
1228 . cb_cls = cb_cls ,
1229 .pg = pg
1230 } } ;
1231 enum GNUNET_DB_QueryStatus qs ;
1232
1233 PREPARE (pg,
1234 "auditor_ {snake_case}_get_desc " ,
1235 "SELECT"
1236 { sql_i }
1237 " FROM auditor_ {snake_case}"
1238 " WHERE (row_id < $1) "
1239 " AND ($2 OR suppressed is false) "

112

A. Appendices

1240 " ORDER BY row_id DESC"
1241 " LIMIT $3"
1242) ;
1243 PREPARE (pg,
1244 "auditor_ {snake_case}_get_asc " ,
1245 "SELECT"
1246 { sql_i }
1247 " FROM auditor_ {snake_case}"
1248 " WHERE (row_id > $1) "
1249 " AND ($2 OR suppressed is false) "
1250 " ORDER BY row_id ASC"
1251 " LIMIT $3"
1252) ;
1253 qs = GNUNET_PQ_eval_prepared_multi_select (pg−>conn ,
1254 (l imi t > 0)
1255 ? "auditor_ {snake_case}_get_asc"
1256 : " auditor_ {snake_case}_get_desc " ,
1257 params,
1258 &{snake_case}_cb ,
1259 &dcc) ;
1260
1261 i f (qs > 0)
1262 return dcc . qs ;
1263 GNUNET_break (GNUNET_DB_STATUS_HARD_ERROR != qs) ;
1264 return qs ;
1265 } }
1266
1267
1268 """
1269
1270 return ret
1271
1272 def pg_get_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1273
1274 ret = f"""
1275
1276 { license }
1277
1278 #ifndef SRC_PG_GET_{screaming_snake_case}_H
1279 #define SRC_PG_GET_{screaming_snake_case}_H
1280
1281 #include " ta ler_ut i l . h"
1282 #include " taler_json_lib .h"
1283 #include " taler_auditordb_plugin .h"
1284
1285 /**
1286 * Get information about {kebab_case} from the database .
1287 *
1288 * @param cls the @e cls of this struct with the plugin−specif ic state
1289 * @param start_id row/ ser ial ID where to start the iterat ion (0 from
1290 * the start , exclusive , i . e . ser ial_ids must start from 1)
1291 * @param return_suppressed should suppressed rows be returned anyway?
1292 * @param cb function to cal l with results
1293 * @param cb_cls closure for @a cb
1294 * @return query result status
1295 */
1296 enum GNUNET_DB_QueryStatus
1297 TAH_PG_get_{snake_case} (
1298 void *cls ,
1299 int64_t l imit ,
1300 uint64_t offset ,
1301 bool return_suppressed ,

113

A. Appendices

1302 TALER_AUDITORDB_{camelCase}Callback cb ,
1303 void *cb_cls) ;
1304
1305 #endif / / SRC_PG_GET_{screaming_snake_case}_H
1306
1307
1308 """
1309
1310 return ret
1311
1312
1313 def pg_auditor(words, comp):
1314
1315 pl = ""
1316 for w in words.items():
1317 pl += qupq(w[0], w[1]) + ",\n"
1318
1319
1320 sql_i = ""
1321 sql_c = 0
1322 sql_a = ""
1323 for w in words.items():
1324 if (sql_c == 0):
1325 sql_i += "\"(␣" + w[0] + ",\"\n"
1326 else:
1327 sql_i += "\"␣" + w[0] + ",\"\n"
1328 sql_c += 1
1329 sql_a += f"${sql_c},"
1330
1331 sql_i = sql_i.removesuffix(",\"\n") + "\"\n"
1332 sql_a = sql_a.removesuffix(",")
1333 sql_i += f"\")␣VALUES␣({sql_a});\""
1334
1335
1336 sc = "_".join(comp)
1337 ssc = "_".join(map(str.upper,comp))
1338 kc = "-".join(comp)
1339 cc = "".join(map(str.capitalize,comp))
1340
1341
1342 pl_b = ""
1343 for w in words.items():
1344 if (w[0] == "row_id"):
1345 continue
1346 pl_b += qupq(w[0], w[1]) + ",\n"
1347
1348 p = pg_insert(sc,ssc,kc,cc,pl_b,sql_i)
1349
1350 f = open("taler-files/auditordb/pg_insert_" + sc + ".c","w+")
1351 f.write(p)
1352 f.close()
1353
1354 p = pg_insert_h(sc,ssc,kc,cc,pl_b,sql_i)
1355
1356 f = open("taler-files/auditordb/pg_insert_" + sc + ".h","w+")
1357 f.write(p)
1358 f.close()
1359
1360
1361 sql_i = ""
1362 for w in words.items():
1363 sql_i += "\"␣" + w[0] + ",\"\n"

114

A. Appendices

1364
1365 sql_i = sql_i.removesuffix(",\"\n") + "\""
1366
1367
1368 sc = "_".join(comp)
1369 ssc = "_".join(map(str.upper,comp))
1370 kc = "-".join(comp)
1371 cc = "".join(map(str.capitalize,comp))
1372
1373 pl_c = ""
1374 for w in words.items():
1375 if (w[0] == "row_id"):
1376 continue
1377 pl_c += sppq(w[0], w[1]) + ",\n"
1378
1379 p = pg_get(sc,ssc,kc,cc,pl_c,sql_i)
1380
1381 f = open("taler-files/auditordb/pg_get_" + sc + ".c","w+")
1382 f.write(p)
1383 f.close()
1384
1385 p = pg_get_h(sc,ssc,kc,cc,pl_c,sql_i)
1386
1387 f = open("taler-files/auditordb/pg_get_" + sc + ".h","w+")
1388 f.write(p)
1389 f.close()
1390
1391
1392
1393 p = pg_upd(sc,ssc,kc,cc,pl)
1394
1395 f = open("taler-files/auditordb/pg_update_" + sc + ".c","w+")
1396 f.write(p)
1397 f.close()
1398
1399 p = pg_upd_h(sc,ssc,kc,cc,pl)
1400
1401 f = open("taler-files/auditordb/pg_update_" + sc + ".h","w+")
1402 f.write(p)
1403 f.close()
1404
1405
1406
1407 p = pg_del(sc,ssc,kc,cc,pl)
1408
1409 f = open("taler-files/auditordb/pg_del_" + sc + ".c","w+")
1410 f.write(p)
1411 f.close()
1412
1413 p = pg_del_h(sc,ssc,kc,cc,pl)
1414
1415 f = open("taler-files/auditordb/pg_del_" + sc + ".h","w+")
1416 f.write(p)
1417 f.close()
1418
1419
1420 def taler_auditor_httpd(amalgamation):
1421 print("taler-auditor-httpd")
1422
1423 for a in amalgamation:
1424
1425 sc = a[2]

115

A. Appendices

1426 ssc = a[3]
1427 kc = a[4]
1428 cc = a[5]
1429
1430 print(f"""
1431 #include " taler−auditor−httpd_{kc}−del .h"
1432 #include " taler−auditor−httpd_{kc}−put .h"
1433 #include " taler−auditor−httpd_{kc}−get .h"
1434 #include " taler−auditor−httpd_{kc}−upd.h"
1435 """)
1436
1437 def plugin_auditordb_postgres(amalgamation):
1438
1439 print("plugin_auditordb_postgres:\n")
1440
1441 for a in amalgamation:
1442
1443 sc = a[2]
1444 ssc = a[3]
1445 kc = a[4]
1446 cc = a[5]
1447
1448
1449
1450 print(f"""
1451 #include "pg_get_{sc } . h"
1452 #include "pg_del_{sc } . h"
1453 #include "pg_insert_ {sc } . h"
1454 #include "pg_update_{sc } . h"
1455 """)
1456
1457 print(f"""
1458 plugin−>delete_ {sc } = &TAH_PG_del_{sc } ;
1459 plugin−>insert_ {sc } = &TAH_PG_insert_{sc } ;
1460 plugin−>get_{sc } = &TAH_PG_get_{sc } ;
1461 plugin−>update_{sc } = &TAH_PG_update_{sc } ;
1462 """)
1463
1464 def taler_auditordb_plugin(amalgamation):
1465
1466 print("taler_auditordb_plugin.h:\n")
1467
1468 for a in amalgamation:
1469
1470 sc = a[2]
1471 ssc = a[3]
1472 kc = a[4]
1473 cc = a[5]
1474
1475 words = a[0]
1476
1477
1478
1479 str_content = ""
1480 for w in words.items():
1481 if w[0] == "row_id":
1482 continue
1483 str_content += c_types[w[1]] + "␣" + w[0] + ";\n"
1484
1485 print(f"""
1486 struct TALER_AUDITORDB_{cc }
1487 { {

116

A. Appendices

1488 unsigned int row_id ;
1489 { str_content }
1490 } } ;
1491 """)
1492
1493 print(f"""
1494 typedef enum GNUNET_GenericReturnValue
1495 (*TALER_AUDITORDB_{cc }Callback) (
1496 void *cls ,
1497 uint64_t serial_id ,
1498 const struct TALER_AUDITORDB_{cc } *dc) ;
1499 """)
1500
1501 print(f"""
1502 enum GNUNET_DB_QueryStatus
1503 (*get_{sc }) (
1504 void *cls ,
1505 int64_t l imit ,
1506 uint64_t offset ,
1507 bool return_suppressed ,
1508 TALER_AUDITORDB_{cc }Callback cb ,
1509 void *cb_cls) ;
1510 """)
1511
1512 print(f"""
1513 enum GNUNET_DB_QueryStatus
1514 (* delete_ {sc }) (
1515 void *cls ,
1516 uint64_t row_id) ;
1517 """)
1518
1519 print(f"""
1520 enum GNUNET_DB_QueryStatus
1521 (* insert_ {sc }) (
1522 void *cls ,
1523 const struct TALER_AUDITORDB_{cc } *dc) ;
1524 """)
1525
1526
1527 print(f"""
1528 enum GNUNET_DB_QueryStatus
1529 (*update_{sc }) (
1530 void *cls ,
1531 const struct TALER_AUDITORDB_Generic_Update *gu) ;
1532 """)
1533
1534 def makefile_auditordb(amalgamation):
1535
1536
1537 print("\nmakefile␣auditordb\n")
1538
1539 for a in amalgamation:
1540
1541 sc = a[2]
1542 ssc = a[3]
1543 kc = a[4]
1544 cc = a[5]
1545
1546 print(f"""
1547 pg_get_{sc } . c pg_get_{sc } . h \ \
1548 pg_del_{sc } . c pg_del_{sc } . h \ \
1549 pg_insert_ {sc } . c pg_insert_ {sc } . h \ \

117

A. Appendices

1550 pg_update_{sc } . c pg_update_{sc } . h \ \
1551 """)
1552
1553 def makefile_auditor(amalgamation):
1554
1555
1556 print("\nmakefile␣auditor\n")
1557
1558 for a in amalgamation:
1559
1560 sc = a[2]
1561 ssc = a[3]
1562 kc = a[4]
1563 cc = a[5]
1564
1565
1566
1567
1568 print(f"""
1569 taler−auditor−httpd_{kc}−del . c taler−auditor−httpd_{kc}−del .h \ \
1570 taler−auditor−httpd_{kc}−put . c taler−auditor−httpd_{kc}−put .h \ \
1571 taler−auditor−httpd_{kc}−get . c taler−auditor−httpd_{kc}−get .h \ \
1572 taler−auditor−httpd_{kc}−upd. c taler−auditor−httpd_{kc}−upd.h \ \
1573 """)
1574
1575
1576 def taler_auditor_httpd_again(amalgamation):
1577
1578
1579 print("\ntaler-auditor-httpd\n")
1580
1581 for a in amalgamation:
1582
1583 sc = a[2]
1584 ssc = a[3]
1585 kc = a[4]
1586 cc = a[5]
1587
1588
1589
1590 print(f"""
1591 { { " / { kc } " , MHD_HTTP_METHOD_GET,
1592 " application / json " ,
1593 NULL, 0 ,
1594 &TAH_{ssc }_handler_get ,
1595 MHD_HTTP_OK } } ,
1596 { { " / { kc } " , MHD_HTTP_METHOD_PUT,
1597 " application / json " ,
1598 NULL, 0 ,
1599 &TAH_{ssc }_handler_put ,
1600 MHD_HTTP_OK } } ,
1601 { { " / { kc } " , MHD_HTTP_METHOD_DELETE,
1602 " application / json " ,
1603 NULL, 0 ,
1604 &TAH_{ssc }_handler_delete ,
1605 MHD_HTTP_OK } } ,
1606 { { " / { kc } " , MHD_HTTP_METHOD_PATCH,
1607 " application / json " ,
1608 NULL, 0 ,
1609 &TAH_{ssc }_handler_update ,
1610 MHD_HTTP_OK } } ,
1611 """)

118

A. Appendices

1612
1613 def main():
1614
1615 amalgamation = list()
1616
1617 directory = os.fsencode("taler-files/sql")
1618
1619 for file in os.listdir(directory):
1620
1621 words = {}
1622
1623 name = os.fsdecode(file)
1624 path = os.fsdecode(directory)
1625
1626 if (name.find("DS-Store")):
1627 continue
1628
1629 nm = name.removesuffix(".sql")
1630 comp = list(filter(lambda x: x != "0002-auditor",nm.split(’_’)))
1631
1632
1633 sql = open(path + ’/’ + name, ’r’, encoding=’utf-8’, errors=’ignore’)
1634
1635 lines = sql.readlines()
1636
1637 i = 0
1638 for line in lines:
1639 #find point of interest
1640 if (line.find("CREATE␣TABLE") < 0):
1641 i += 1
1642 continue
1643 else:
1644 i += 1
1645 # skips one , but that is ok
1646 exit = 0
1647 for x in range(i,len(lines) - 1):
1648 sql = lines[x]
1649
1650 if (sql.find(");") >= 0):
1651 exit = 1
1652
1653 if (exit == 0):
1654 sql = re.sub(r’[^\w\s]’, ’’, sql)
1655
1656 if (sql != ’\n’):
1657
1658 dingdong = sql.split(’␣’)
1659
1660 bloop = list(filter(lambda x: x != ’’,dingdong))
1661
1662 #print (bloop)
1663 words[bloop[0].strip().lower()] = bloop[1].strip().lower()
1664
1665
1666
1667 httpd(words, comp)
1668
1669 pg_auditor(words,comp)
1670
1671 # copy paste
1672
1673 sc = "_".join(comp)

119

A. Appendices

1674 ssc = "_".join(map(str.upper,comp))
1675 kc = "-".join(comp)
1676 cc = "".join(map(str.capitalize,comp))
1677
1678 tpl = (words, comp, sc, ssc, kc, cc)
1679
1680 amalgamation.append(tpl)
1681
1682
1683
1684 taler_auditor_httpd(amalgamation)
1685
1686 plugin_auditordb_postgres(amalgamation)
1687
1688 taler_auditordb_plugin(amalgamation)
1689
1690 makefile_auditordb(amalgamation)
1691
1692
1693 makefile_auditor(amalgamation)
1694
1695 taler_auditor_httpd_again(amalgamation)
1696
1697
1698 if __name__ == "__main__":
1699 main()� �

120

	Abstract
	Acknowledgements
	Introduction
	Motivation
	GNU Taler
	Real-Time GNU Taler Auditor
	Goals
	Scope

	Preliminaries
	GNU Taler actors
	The Exchange
	The Wallet
	The Merchant
	The Auditor

	GNU Taler Architecture
	GNU Taler Concepts
	Coins and Denominations
	Keys and Signatures
	Blind Signatures
	Wire Transfer
	Purse
	Reserves
	Revocation
	Recoup
	Dirty Coin
	Melt
	Refresh
	Reveal

	Auditor architecture
	Protocols and States
	Reserve
	Coin
	Deposit

	Description of Helpers
	Helper Aggregation
	Helper Coins
	Helper Deposits
	Helper Wire
	Helper Purses
	Helper reserves

	Solution Design
	Architecture
	Auditor database
	REST API
	SPA
	Data to Display

	Implementation
	Overview
	Implementation of tables
	Overview
	Monitoring Status
	Critical Errors
	Operational Status

	Interfaces
	REST API
	PostgreSQL C API

	TRIGGERS, LISTEN and NOTIFY
	Single Page Application
	Description
	Technologies
	Implementation
	Authentication
	Dashboards

	Discussion
	Approach
	Future Work

	Conclusion
	Bibliography
	List of Figures
	Glossary
	Appendices
	Project management
	Definition
	Methodology
	Organization
	Execution
	Completion

	Auditor REST API
	Python Scripts

