TALER
/7.

Real-time GNU Taler auditor

Bachelor’s Thesis

Real-Time GNU Taler Auditor

Course of study Bachelor of Science in Computer Science
Author Cédric Vincenz Zwahlen and Nicola Sacha Eigel
Advisor Prof. Dr. Christian Grothoff

Co-advisor Prof. Dr. Emmanuel Benoist

Expert Han van der Kleij

Version 0.1 of June 13, 2024

Technik und Informatik
Mikro- und Medizintechnik

Abstract

One of the key components of the GNU Taler payment system is the auditor,
which is used to ensure that a payment service provider operating the payment
system is operating correctly. The primary goal, is to provide assurances against
insider threats, compromised systems or data corruption due to technical fail-
ures.

In the context of this thesis, the GNU Taler auditor was improved, and now works
in real-time, thus providing operators and regulators with more timely insights
into the payment system. This was achieved by changing the existing logic, which
would previously generate periodic JSON reports, to a database-centric approach.
By implementing a REST API service for the newly generated database tables, the
newly created single page application is able to visualize audit data in real-time
on its dashboards.

To achieve those changes, the six GNU Taler auditor helper programs, each re-
sponsible for analyzing different parts of a GNU Taler exchange, were adapted.
The existing report generating logic was analyzed and the database was extended
with tables to store the various findings generated by the auditor. This replaces
the existing periodic report generating logic.

The new tables contain distinct aspects of GNU Taler that are relevant to the au-
diting process, such as failures, delays in processing, active operations, or simply
the system state with the amounts of currency in circulation or the total amount
of the various payment fees earned by the exchange. For each of the new tables,
new REST API endpoints were designed, documented and implemented.

This enabled the development of a new auditor frontend, the single page appli-
cation for displaying the data in an easy, understandable and digestable manner.
Necessary access control precautions were taken into consideration and imple-
mented.

To foster sustainable development practices, the auditors unit tests were also
adapted and changed. Due to the database-centric approach, the unit tests now
not only need tests for the main auditing logic, but also tests for the functional-
ity of the REST API. Each test case begins by running the auditor helpers, which
insert various reports into the database. After a fault injection, the tests then
query the database via the REST API and then check that the correct findings are
returned by the REST API.

Acknowledgements

We want to sincerely thank Christian Grothoff and Emmanuel Benoist for the
opportunity to work on and improve GNU Taler. Their teaching, support and
trust was immensely helpful to this work and our growth.

We also want to thank the whole GNU Taler team, especially to Ozgiir Kesim,
Florian Dold and Sebastian Marchano for their knowledge and technical support.

We also want to thank our families and friends for enduring us, their support,
time, understanding and accommodation.

Lastly, we want to acknowledge all the previous contributions to the auditor and
GNU Taler in general. Big parts of the code and the logic from the auditor and as-
sociated components were already existing and we merely extended or adjusted
it to make it real-time or fit its cause. Also, a lot of documents, texts and explana-
tions, which we used in this work.

Contents

Abstract il

Acknowledgements iii

1. Introduction

1.1.
1.2.
1.3.
14.
1.5.

2. Preliminaries

2.1.

2.2.
2.3.

24.
2.5.

Motivation v e e e e e e e e e e e e e e e
GNUTaler it e e e e e e e e e e e e e e e
Real-Time GNU Taler Auditor
Goals e e e e e e e e e

AP OWONR PR

GNUTaler actors v v v v v v i e e e e e e e e e e e e e
21.1. TheExchange
21.2. TheWallet i it i it i i e
2.1.3. TheMerchanto,
2.14. TheAuditor ittt
GNU Taler Architecture v
GNU Taler Concepts v v v v v v v v i e e e e e e e e
2.3.1. Coins and Denominations
2.3.2. KeysandSignatures.,
2.3.3. BlindSignatures. oL
2.34. WireTransfer v i v i i it i i ..
235, Purse. e e e e e e e e e
2.3.6. Reserves i i i i e e e e e e e e e e e e e e e e
2.37. Revocation. i v i i ittt 10
238. Recoup. o v i i i i i i e 10
239. DirtyCoin v oL e 10
2.300. Melt e e e e e e e e e e e e e e e e 10
2311, Refresh o i i i e e 10
2312. Reveal e e e e e e e 10
Auditor architecture e e 11
ProtocolsandStates 12
2.5.1. Reserve i i e e e e e e e e e e e e e e e 12
2.5.2. COIN . . v v e e e e e e e e e e e e e e e e e e e 13
253, Deposit. e e e e e e 15

O O \O 00 00 00 00 N O U1 U1 U1 U1 Ul

Contents

2.6. Descriptionof Helpers
2.6.1. Helper Aggregation
2.6.2. HelperCoins v i v i,
2.6.3. HelperDeposits
264. HelperWire o i it i i it
2.6.5. HelperPurses
2.6.6. Helperreserves,

3. Solution Design
3.1. Architecture e e e e e e e e e e e
3.2. Auditordatabase e
3.3. REST APIL. e e e e e e e e e e e e e e
34, SPA . . e e e e e e e e e e e e
341. DatatoDisplay

4. Implementation
41, OVEIVIEW . . v v i v i e
4.2. Implementationoftables
421, OVEIVIEW . . v v v v i it it e et et e e e e e e
4.2.2. MonitoringStatus oL L oo
42.3. CriticalErrors oL oo
424. OperationalStatus,
43. Interfaces e
43.1. RESTAPI. i ittt ie e e
4.3.2. PostgreSQLCAPI
44. TRIGGERS, LISTEN and NOTIFY
4.5. Single Page Applicationo oo
4.51. Description
4.5.2. Technologies,
4.5.3. Implementation,
4.54. Authentication,
45.5. Dashboards,

5. Discussion
51. Approach e e
52. Future Work 0 i e e e e e e e

6. Conclusion
Bibliography
List of Figures

Glossary

23
23
24
24
25
26

27
27
27
27
28
31
32
34
34
37
37
38
38
38
38
39
39

41
41
42

43
46
48

49

Contents

A. Appendices 50
Al. Projectmanagement 50
All. Definition 50

A1.2. Methodologyy 51

A13. Organization. o v v v v v i i i e 52

Al4. Executiont 53

A15. Completion e 54

A2, Auditor RESTAPI ittt e e e e e e e e 54

A3. PythonScripts o o i e e 82

1. Introduction

1.1. Motivation

The world of money is in a state of change. Nations all over the world are embrac-
ing the research and development of new kinds of payment systems or currencies
themselves. The call for a faster transaction finality, better ease of use and the
removal of middlemen, while preserving or amplifying the security and privacy
of payment systems, is supported by the further development of the Internet and
society.

Throughout the history of money, which led to this current need for change, peo-
ple tried to abuse the available payment systems to their advantage. Resulting in
disastrous losses for involved people and societies, like Bernie Madoff’s ponzi
scheme [1] or Wirecard’s “questionable” accounting practices [2]. The lack of ac-
counting and auditability is prevalent, seemingly no payment system exists that
includes a secure by design approach. The newest technology hype, cryptocur-
rencies and central bank digital currencies, often building on blockchain tech-
nology, may have found a solution for distributed digital payments. However,
these contemporary systems are inadequate to stop the next meltdown, as evi-
denced by the fact that, they are more often than not, key to enabling criminal
activities. [3] [4]

With the emerging possibility of online micro payments creating potentially a 10-
1000x increase in transaction volume with virtually instant transaction finality,
security and privacy requirements for modern payment systems are higher then
ever. Our objective is to show a way to cope with those requirements and to create
a building block for the payment system of the future.

Our work focuses on the GNU Taler payment system, which differs from most
existing payment systems by its comprehensive use of digital signatures. This
work enhances the auditor system of Taler, which is designed to detect and miti-
gate operational problems to prevent financial tragedies. The auditor is an inde-
pendent component which can be attached to a Taler payment service provider
(an exchange) and then monitors Taler’s internal transactions as well as trans-
actions in the core banking systems. The goal is to verify that the exchange is
operating correctly. This provides the much needed ability to amplify the secu-
rity and auditability of a payment system to prevent fraud, insider threats and
other shortcomings.

1. Introduction

1.2.

GNU Taler

TALER
/7.

Figure 1.1.: Logo of GNU Taler [5]

GNU Taler is a payment system that provides a way to pay digitally and anony-
mously. It is built on the following design principles:

1.
2.

w

0 X N A

Free/Libre Software
Protect the privacy of buyers

Auditability - enable the state to tax income and crack down on illegal busi-
ness activities

Prevent payment fraud

Collect the minimum information necessary
Be usable

Be efficient

Fault-tolerant design

Foster competition

Its goal is to be like cash, but digital. This means providing near instant trans-
action finality, the ability to do micro payments and it has to be easy to use. It's
currently the only payment system worldwide that manages to protect the buyers
privacy, while simultaneously enabling the state to enforce tax on merchants and
allow for the implementation of anti money laundering (AML) logic.

GNU Taler is neither based on a blockchain, nor based on some other type of de-
centralised ledger; instead, payment services are offered by providers that use a
traditional SQL database. To provide cash-like privacy for payers, it uses a con-
cept called blind signatures [6] and advanced state-of-the-art cryptography.

1. Introduction

1.3. Real-Time GNU Taler Auditor

Conscientious and thorough auditing is vital for any serious payment system and
the assumption it’s useless or unnecessary is beyond naive and will inevitably
lead to disaster. Cases like the previously mentionend Wirecard fraud make it
clear that there is a real need for automated systems to verify the integrity of
payment services. This is exactly what a GNU Taler auditor does.

In fact, precisely because GNU Taler is intended to be a micro payment service
where transactions take milliseconds to complete and is expected to handle hun-
dreds of small payments a minute, it must provide an automated auditor. Because
auditing such a magniture of transactions by hand to find discrepancies or pat-
terns of misbehaviour, would simply be impossible. And even if it was possible to
comb through all this data manually, because the tokens are blinded, establishing
a trail between them is futile.

From the beginning, GNU Taler was designed to include auditor capabilities. The
auditor is not only designed to give peace of mind for the developers, but also for
its operators, users and regulators.

The auditor is a core component of the GNU Taler. It receives a replica of the ex-
change’s database as its primary source of truth. Additionally, the auditor must
have access to the core banking system to inspect the wire transfers of the ex-
change’s bank account, and it also receives input from merchants.! The auditing
logic is implemented in six helper programs which verify that the state of the var-
ious databases is consistent. The auditor generates reports that summarize the
state of the system and detail various discrepancies, with the goal of identifying
attacks from both outsiders and insiders.

*In the future, it should also receive inputs directly from wallets.

1. Introduction

1.4. Goals

The goal of this work, was to adapt the auditor, so it could present its findings in
real-time.

The existing auditor logic, primarily the six helper programs, was to be extended
and to store results in a database instead of in JSON files. Thus, part of the work
involved extending the database schema. Database triggers and the LISTEN-NOTIFY
mechanism of PostgreSQL [7] would need to be added to notify helper programs

of new database records, activating the respective helper logic instantly instead
of relying on periodic jobs.

The resulting audit data should then be made accessible viaa REST API, allowing
it to be queried and displayed in an easy fashion. For this, a single page applica-
tion should show inconsistencies in the exchange as they are discovered. The
data should be organized into various dashboards that are easy digestible and
user-friendly. The webpage should also allow operators to silence warnings they
have already investigated, allowing operators to keep track only of still relevant
information.

1.5. Scope

The scope of this work is as follows:

Renovate the current auditors logic, its six helper programs, to store its re-
portdatain a database instead of generating reports. Abide by existing GNU
Taler design and coding standards.

Extending the auditors REST API logic, to provide the ability for retrieval of
parts of the auditors database. Adding a protection layer is obligatory. The
REST API design has to be well documented in the official GNU Taler docs.

Creating a single page application, with some reasonable form of access
control protection, that displays the highly valued information in an easy
digestible and understandable manner. The application shall be built on
the same technology as existing GNU Taler backends for other components.

Adjust the existing auditor unit tests to work with the new auditors database-
centric structure.

2. Preliminaries

2.1. GNU Taler actors

A digital transaction always features at least two actors; the customer and mer-
chant. GNU Taler needs two more - the exchange and the wallet. Each actor has
its own set of responsibilities and capabilities. The auditor’s task is to implement
verification mechanisms, to audit each of these actors.

2.1.1. The Exchange

The Taler exchange is run by a bank - it may even be run by a central bank. Its
main function is to exchange 'regular’ currency - say swiss francs - into GNU
Taler currency, one unit of which, is called a token. A given amount of francs,
may be exchanged for an equivalent amount of GNU Taler of the same value. So,
exchanging 1 CHF, yields a token worth 1 CHF. This means, that GNU Taler is not
a separate currency, but simply an alternative way to spend money, that is digital
and anonymous.

2.1.2. The Wallet

Tokens received from an exchange are stored in a GNU Taler wallet, which may
be installed on phones or opened in browsers. From there, tokens may be spent
directly at merchants or be sent to other people. An exchange does not know
which tokens it has issued to whom. While this is great for privacy, it also means
that anyone in possession of GNU Taler tokens is solely responsible for keeping
them safe - a lost token may not be recovered and replaced. To spend tokens,
an internet connection is required. During peer to peer payments, while it may
seem like users can pay someone directly, tokens are actually first sent to the
exchange, and then, a newly anonymized token is passed along to the recipient.

2.1.3. The Merchant

Tokens may be spent at any merchant that accepts them. A merchant can then
contact an exchange, to redeem any tokens it received and have their equiva-
lent value be deposited in their bank account. This system ensures, that a payers

2. Preliminaries

identity remains anonymous, while merchants must disclose themselves to an
exchange to receive money. This important for tax purposes.

2.1.4. The Auditor

While the auditor is an important part of GNU Taler, it does not issue, redeem
or receive currency. Instead, it constantly monitors an exchange’s database, and
verifies its soundness. An exchange verifies tokens it receives and vets merchants,
and auditors make sure an exchange acts as expected. A compromised exchange
could generate huge losses for its operators, which makes auditors that may de-
tect discrepancies early, essential to GNU Taler’s security.

The auditor’s role is to find misbehaviors or fraud attempts and monitoring the
systems status. Those can be technological problems like network failures or
system downtimes or things like database manipulation or other issues.

GNU Taler is also equipped to deal with insider threats. Ideally, several instances
of the GNU Taler auditor auditing the same exchange are run simultaneously,
in different physical locations, by different organizations. This way, even if one
auditor is manipulated, others can still operate correctly.

2. Preliminaries

2.2. GNU Taler Architecture

To understand the auditor and the exchange, one needs to understand Taler’s
payment flow, its concepts and the structure.

2. Wire 8. Wire
transfer 5 transfer
Exchange’s
Bank

7. Retire
3 Czeoai:t: l T coins (in
NI bulk) [THIN]

. Database 5
Customer’s Merchant’s

Bank Bank
@

Exchange

1. Pay 4
exchange Withdraw

6. Deposit 9. View
coins (in balance
Q coins \ bulk) E

N
e ER]| —
——
Browser/Mobile
Wallet Webshop

—_—

5. Spend
coins

Customer Merchant

Figure 2.1.: Overview of the taler architecture [8]

The figure 2.1. shows an overview of Taler’s architecture and the payment flow;
which works as follows:

1. The customer sets up a wire transfer through its bank of choice.
2. The bank operating the exchange receives the wire transfer.

3. The operating bank then creates the tokenized coins, in the amount of the
received value of the wire transfer. Those coins are blinded using a blind
signature (see chapter 2.3.3.), meaning, the exchange does not know (!), who
redeems these coins.

4. The customer redeems those coins through his wallet anonymously.

5. The customer spends his coins by buying something or sending money to
another party.

2. Preliminaries

6. As soon as the merchant wants to redeem the money to have it in his bank
account, he deposits his coins to the exchange. He does this in bulk, mean-
ing, a whole stack of coins out of transactions.

7. The exchange passes received coin deposits to the operating bank.
8. The exchange operating bank sends a wire transfer to the merchant’s bank.

9. The merchant receives the money.

2.3. GNU Taler Concepts

There are some unique problems a digital payment system needs to master. The
concepts, methods and systems that solve them and lay the essential groundwork
for the GNU Taler payment protocol are elaborated in this chapter.

Important concepts needed to understand the auditor, are:

2.3.12. Coins and Denominations

There may be a product on sale for 42 swiss francs. To buy it, a wallet needs to
have coins in the value of at least that amount plus the transaction fees. Say the
wallet has ten coins with a value of 5, it would pay with 9 out of those ten coins, to
a total of 45 swiss francs. Say the merchant wallet now only has coins with value
of 5 swiss francs as well, it could not return change properly. That’s were denom-
inations come into play. Coin denominations represent values of a coin, say 50
centimes. The payment can be concluded by paying with coin denominations.

2.3.2. Keys and Signatures

Taler uses cryptography to ensure it can hold what it promises. One crypto-
graphic system used throughout is public-key cryptography [9]. This system uses
pairs of keys called public and private keys. Such key pairs are used whenever
two actor communicate with each other via the internet.

2.3.3. Blind Signatures

Another cryptographic system, absolutely essential to GNU Taler, are blind sig-
natures [10]. Their goal is to provide unlinkability and anonymity to coins, and
thus making it impossible for the exchange to identify the customer redeeming
them. Blind signatures can be understood as an extension of public-key cryptog-
raphy. It functions like a ballot that has been put into an envelope. The envelope
then gets signed by the authority, but the authority does not know what is inside

2. Preliminaries

the envelope. Similarly, the exchange does not know whom it issues the coins to,
but knows they are valid because it signed them.

2.3.4. Wire Transfer

A wire transfer is simply a money transfer between a bank and its exchange. A
wire transfer is accompanied by a transfer fee.

2.3.5. Purse

A purse is used in a peer to peer transaction. The payer can put their coins into
the purse, which expects a previously determined sum of money, and the payee
may redeem the coins in the purse once the payer put the required amount into
it. A purse is managed by the exchange. [11]

A purse can expire, either because the payer fails to fill it with enough coins or
because the payee does not claim their money.

2.3.6. Reserves

When the customer pays the exchange’s operating bank to receive some GNU
Taler, the exchange opens up a reserve. The customer can then withdraw his
money from the newly created reserve into his wallet. If a reserve is not emptied,
the exchange will eventually close it.

2. Preliminaries

2.3.7. Revocation

A revocation in the context of a signature means, that a signature is declared
invalid. If the signature is still used to sign something, the validation will fail,
because a signature validation process includes querying a signature’s revocation
status.

2.3.8. Recoup

Operations by which an exchange returns the value of coins to their owner, be-
cause their signature is no longer valid. Either, the exchange allows the coin’s
owners to withdraw new coins with a valid signature, or it wires funds back to
the bank account of the coin owner.

2.3.9. Dirty Coin

A coin is dirty if its public key may be known to an entity other than the customer,
thereby creating a situation, in which some entity might be able to link multiple
transactions of coin’s owner if the coin is not refreshed.

2.3.10. Melt

Melting is a step of the refresh protocol. It includes invalidating a dirty coin to
then be renewed in a subsequent reveal step.

2.3.11. Refresh

Operation by which a dirty coin is converted into one or more fresh coins. In-
volves melting the dirty coins and then revealing so-called transfer keys.

2.3.12. Reveal

A step in the refresh protocol where some of the transfer private keys are revealed
to prove honest behavior on the part of the wallet. In the reveal step, the ex-
change returns the signed, fresh coins.

2. Preliminaries

2.4. Auditor architecture

The exchange stores a lot of information to function properly. Including bal-
ances, wire transfers, completed transactions, as well as such still in flight.

However, the exchange is not the auditor’s only source of information, it also re-
ceives data from the merchant and the banking system interface software LibEuFin. [12]
It’s these different sources of information, that makes this auditor so powerful.

auditor exchange

SIS

Databases
Ifetch

>_ e %

Cronjob Helpers Report

starts I | generate I

Figure 2.2.: Old Auditor architecture simplified

Previously, the auditor ran alongside the exchange, where it was configured to
run as a periodic running task (cronjob). The helpers then recorded all discrep-
ancies as they were found, and generated JSON report files before shutting down.
This is not ideal, because the results of an audit can only be seen after the fact.
Also, an auditor may run for a long time, so any results that are found may accu-
mulate over a long period of time - without being seen.

This not only makes it more difficult to mitigate the cause of the problems found,
but might also be overwhelming for any person that would have to review these
audits.

2. Preliminaries

2.5. Protocols and States

In this chapter, select protocols of GNU Taler are explained. They give an idea of
some of the exchange’s processes. Understanding these concepts somewhat will
be useful for further chapters.

2.5.1. Reserve

filled reserve

withdraw close

drained reserve

recoup

Figure 2.3.: Overview of states and state changes of the reserve [13]

A user obtains GNU Taler, by asking his bank to wire some money to an exchange.
This initiates a wire transfer from the bank to the exchange. The exchange then
creates a reserve, filled with coins worth the same as the money payed to the
bank, minus fees. The user is given the private keys to the reserve, and can with-
draw those coins. This drains the reserve and leads to the "drained reserve" state,
once all funds are withdrawn. The reserve itself closes after a certain time, even
if it is not fully drained. A recoup operation is then possible, which will lead to a
filled reserve state again.

2. Preliminaries

2.5.2. Coin

planchet

e

N

=

fresh coin

N
revoked coin

-

(oo
I/

zombie coin

v —

- refresh session @\-‘CD

dirty coin

{ |
|| spent coin || expired coin ||

(=)

N/

Figure 2.4.: Overview of states and state changes of coins [13]

2. Preliminaries

The lifecycle of a coin starts with a planchet, which is created by a wallet if it
wants to withdraw funds from the exchange. The exchange then signs the planchet,
creating a fresh coin.

Once a coin is created several things may happen to it. It can, for example, expire,
if it is not used within a certain time period. It may be refreshed by an exchange.

A coin, or rather its signature, may be revoked. The customer has the ability to
recoup this coin and get a zombie coin, which can then be melted. If such a coin
is spent, it can also be melted directly.

Finally a coin can be spent. By depositing it, it becomes a dirty or a spent coin.
The coin is considered dirty if the public key is shared in some way, and spent if
itis not.

Lastly, a spent coin can, through the refund protocol, become a dirty coin or a
wired coin. Which like the expired coin state, is one of the two possible end states
for a coin and this means it’s life cycle is complete.

2. Preliminaries

2.5.3. Deposit

deposit created

»
deposit ready

’
deposit due

deposit tiny

pending transfer deposit done

finished transfer

Figure 2.5.: Overview of states and state changes of deposits [13]

The depositing process is initiated with a payment. As soon as this process com-
pletes, a deposit is successful. In the ready’ and ‘due’ state, it can aggregate and
thus reach the ’tiny), 'done’ or ’pending transfer’ state. Once the transfer is fin-
ished, the deposit is complete.

A not yet completed deposit may also go through the refund process, which may
or may not be successful, or reach the 'deposit done’ state.

2. Preliminaries

2.6. Description of Helpers

The work of the auditor takes places in its six helper programs, namely the helper
deposits, coins, aggregation, wire, purse and reserves. Each helper has its own
responsibilities and tests it performs, to find potential manipulation or misbe-
haviour.

Each helper roughly perform the same steps. First, they check their current au-
diting progress, as to not do the same work twice. Then tests are performed, and
lastly auditing results are stored and their progress is updated. The helpers also
piece together their own version of some of the exchanges database, like the ex-
changes current balances, reserves and so on, these are also updated as tests are
being performed.

2.6.1. Helper Aggregation

The helper aggregation audits the exchanges aggregation activity. It includes the
following test cases:

Check that a wire transfer made by the exchange is valid

This test first checks if a wire transfer has a transfer method, then compares the
payto method with the payto URI. If they don’t match, the auditor reports a 'row
inconsistency’. Afterwards the auditor tries to find details, the denomination key
and history for said coin claimed in the aggregation. If it cant find them, a 'row
inconsistency’ is reported here as well. The test goes on to lookup the technical
details of the coin, trying to find wrong denomination keys, expired coins or bad
signatures, which will result in a "bad-sig-losses’ report.

If it finds an invalid coin denomination signature, it will report a 'row inconsis-
tency’ again. Afterwards, it compares the coin and its paid fee, with the actual
deposit fee, to find and report a 'amount arithmetic inconsistency’ if they do not
match.

Then, the helper checks other details of the wire transfer, like comparing the
outgoing wire transfer target with the hash of the wire from the deposit while also
comparing given wire transfer dates. If dates do not match a row inconsistency’
is reported. The last check does a comparison of the given and the calculated
amounts, which in turn can lead to a 'wire out inconsistency), if they differ.

Lookup the wire fee that the exchange charges at a timestamp

To validate wire fees, they are looked up in the exchange, if this is not possible for
some reason, this leads to a 'row inconsistency’ report. If an invalid or negative

2. Preliminaries

fee is reported back after subtracting the fee from the sum of all transactions by
the given wire transfer id, an 'amount arithmetic inconsistency’ report is gener-
ated.

Then, signatures of a wire fee at a given time are checked, if any of them fail,
a 'row inconsistency’ is reported. Next, the helper compares the given fee start
and end dates, which can result in a ’fee time inconsistency’ report if they dont
make sense. This can happen if either the start date is earlier than the previous
end date, or the end date is later than the next start date.

Check coin transaction history for plausibility

To check the coin transaction history, this test iterates over all given transactions
and then computes the deposit and melt values, as well as the refund values.

A ’row inconsistency’ is reported, when multiple instances of the same coin are
detected in the same deposit. An’amount arithmetic inconsistency’ is reported if
there is a disagreement in the given fee structure and the computed one, either
in the deposit, melt or refund values.

This test also checks if the difference between refund values and deposit values
is zero, if it is not, this leads to a ‘coin arithmetic inconsistency’. Following up on
these calculations of total balances, the last checks are a comparison of refunds
and expenditures. A ‘coin arithmetic inconsistency’ is reported in case they don’t
match.

2.6.2. Helper Coins

This helper checks for all coin use cases. Signatures, denominations, blind sig-
nature tests etc.

Check withdrawal operations

This check examines, whether the coin’s denomination key is missing. A row
inconsistency’ is reported if so.

Audit refund’s execution

It inspects if the denomination key is missing, a 'row inconsistency’ is reported
if so. Then, the refund signature is verified, which may lead to a ’bad sig loss’
report. An ’amount arithmetic inconsistency’ is reported, if the amount without
fee, subtracted with the amount with fee, does not correlate with the given refund
fee. Further, if the denomination key for the refunded key is not known to the
auditor, a row inconsistency’ is reported.

2. Preliminaries

Audit purse refund’s execution

If the denomination key is missing, a 'row inconsistency’ is reported. If it is un-
known to the auditor, a 'row inconsistency’ is reported.

Audit about recoups of refreshed coins

Is the denomination key of the old coin missing, a row inconsistency’ is reported.
After this, the coin’s signature is verified, if the verification fails, it leads to 'bad
sig loss’ report. Then the recoup signature is verified, potentially resulting in a
‘row inconsistency’ report. If a coin is invalid - meaning the denomination key
either doesn't exist, is expired or the signature is incorrect - a ’bad sig loss’ is
reported. Next, if the denomination key for recouped coin is unknown to auditor,
‘row incosistency’ is reported. The last check tests if there was a revocation of a
signature that was not forwarded to the denomination, this would then lead to a
’bad sig loss’ report.

Check the refresh execution

It starts with trying to find the denomination key, is it missing, it generates a 'row
inconsistency’. Is the melting signature incorrect, a 'bad sig loss’ is reported.

If the melting fee is higher than the contribution of the melted coin, an 'amount
arithmetic inconsistency’ is reported. If the refresh cost was higher than the
amount without fee and the exchange made a loss, another 'amount arithmetic
inconsistency’ is reported. Next, the test checks again if the denomination key
for the fresh coin is unknown to auditor, or the denomination of the dirty coin is
unknown to it; a 'row inconsistency’ report is generated.

Audit deposit execution

The test attempts to find the denomination key, which may resultin a 'row incon-
sistency’ report if it doesn’t. The same report will also be generated, if the refund
deadline is past the wire deadline. A ’bad sig loss’ is reported when the deposit
signature is invalid.

Audit purse deposit execution

Again, the check for the denomination key runs first and the signature check
second. If the denomination key for a purse-deposited coin is unknown to the
auditor after updating the denomination balance, a 'row inconsistency’ report is
generated.

2. Preliminaries

Check the coin and its history

First the coin’s history is calculated. Then, in case we detected a loss for the coin,
an 'amount arithmetic inconsistency’ report is generated.

2.6.3. Helper Deposits

The helper deposit is the simplest of all helper programs. It has one test case
only:

Check that the deposit confirmation exists in the exchanges database

This test queries the deposit confirmations that were provided to it by merchants
and checks that for each coin used in that deposit, it can find the same transaction
in the exchanges database. If there is one missing, it leads to a reported 'deposit
confirmation inconsistency’.

2.6.4. Helper Wire

The helper wire audits the reserve’s closing operations triggered by the aggrega-
tor. Those run through some tests, while the helper gets its data not only from the
replicated exchange database, it also gets the data from the bank API. It goes over
all bank accounts and checks for deltas and other indicators. As the helper wire
is structured a bit differently than the other helpers, it's more understandable to
display it’s tests in a list:

A ’closure lag’ is detected and reported, if there were any entries found in
reserves closures, that were not yet observed.

A’KYClag’isreported, if there is a kyc entry in the wire transfers that should
have been performed.

An’AML lag’ is reported, if there is an aml entry in the wire transfers that
should have been performed.

A’lag’ is reported, if a lag is detected in the wire transfer.

A ’row minor inconsistency’ is reported, if any kind of timing anomalies
were detected.

A’wire out inconsistency’ is reported, if any outgoing wire transfer was not
yet made, but could or should have been.

A’wire out inconsistency’ is reported, when there is a receiver account mis-
match found on both sides.

A’wire outinconsistency’ is reported, when the wire amounts do not match.

2. Preliminaries

A’row inconsistency’ is reported, if there was a profit drain found. Meaning
a wire transfer happened, that was not allowed to, because a signature was
missing or invalid.

A’wire out inconsistency’ is reported, if a transfer was found with a delta
in target accounts.

A ’wire out inconsistency’ is reported, if a profit drain with an incorrect
amount was found.

A’wire out inconsistency’ is reported, if the jurisdication of a wire transfer
was not found.

A ’wire format inconsistency’ is reported, if there was a format error of a
wire transfer.

A’row inconsistency’ is reported, if a duplicated wire offset was found.

A ’reserve in inconsistency’ is reported, when an incoming wire transfer
claimed by the exchange was not found.

A ’reserve in inconsistency’ is reported, if there is a delta in wire transfer
subjects, on both sides.

A’reserve ininconsistency’is reported, if there is a delta in the wire amount.

A’misattribution in inconsistency’ is reported, if there was a misattribution
found.

A ’row minor inconsistency’ is reported, when the execution dates do not
match.

A’row minor inconsistency’ is reported, if the given closing fee is above the
total amount.

2.6.5. Helper Purses

In this helper, purses are checked.

Handling of a purse’s requests

Verifyies a purses the signatures. If they are invalid, a 'bad signature loss’ report
is generated.

Audit a purse’s merge execution

Tries to verify each purse merge by recomputing it and comparing the signatures.
If they are invalid, a ’bad signature loss’ report is generated. Finally, the auditor

2. Preliminaries

tries to create a new reserve for the given reserve public key. If it fails, it reports
a’row inconsistency’.

Audit an account’s merge execution

Audits account merges and tries to verify its signatures and on failing, a ’bad sig-
nature loss’ report is generated.

Audit a purse’s decision

With all purse refunds loaded from the database, the test first tries to setup the
purse, possibly resulting in a 'row inconsistency’ report. Then, the purse fee for
the purse created at the given time will be queried, to check if the fee is available
or not, which if not, results in a 'row inconsistency’ report. If the fee is available
but higher than the balance, another ’row inconsistency’ is reported. The last two
checks compare the values of a purse, either the refund or the merge values, if
they don’t match, this results in an 'amount arithmetic inconsistency’.

Audit expired purses

An expired purse, that was not closed, immediately leads to a "purse not closed
inconsistency’ report.

Purse balance summary check

Finally the last purse check does an iteration over all purses and checks if it can
query their respecitve fees and if not, this results in a 'row inconsistency’. It goes
on to subtract the fee from the balance to get the actual balance it expects and
tests, if the purse fee is higher than the given balance. If so, a ’row inconsistency’
report is stored. The last check compares the purse’s exchange balance amount
with the balance amount given without the fee, if they don’t match up, an ’amount
arithmetic inconsistency’ is reported.

2.6.6. Helper reserves

The helper reserves audits reserves for being well-formed.

2. Preliminaries

Audit withdrawals

The test starts by checking for the denomination key, if it is not found, a 'row in-
consistency’ is reported. It goes on to check the execution date of a withdrawal,
if it is not within the allowed range, it leads to a ‘denomination key validity with-
draw inconsistency’.

Audit recoup operations by reserve

First, the coin’s signature is verified, looking for a ’bad sig loss’. Second, a 'row
inconsistency’ is reported if the revocation set does not include the denomination
key. Third, another ’bad sig loss’ is reported, if the master signature is invalid.

Test reserve opening operations

If the reserves operation specific signature is invalid, a ’bad sig loss’ is reported.

Test reserve closing operations

The fee of the reserve closing operation is checked for deltas in given and ex-
pected values, potentially resulting in an 'amount arithmetic inconsistency’ re-
port. While the reserve closing request is unknown to the auditor, a 'row incon-
sistency’ is reported. Another ’bad sig loss’ is reported, if the signature of the
closing request is invalid. Lastly, the test reports 'row inconsistencies’ for the fol-
lowing cases: the target account is not verified and auditor does not know the
reserve, or the target account does not match its origin account in sender and
receiver.

Checks account merge requests

It checks the reserve’s signature, which leads to a 'bad sig loss’ if the verification
fails.

Verify reserve balances

A ’reserve balance insufficient inconsistency’ is reported, in case of given bal-
ances not matching, either in negative or positive.

A’reserve balance summary wrong inconsistency’ is noticed and reported, if the
computed and given amounts do not match.

A ’reserve not closed inconsistency’ is found and reported, when either the re-
maining reserve balance exceeds the closing fee, or the closing fee could not be
determined.

3. Solution Design

3.1. Architecture

A lot of changes to the existing auditor architecture were necessary, since the
auditor should now write into a database instead of JSON files.

Merchant backend

laCCGSSGS
1.

Y -

£l

Auditor API
lwrites
= = reads
exchange ; exchange.auditor suppress accesses
- replicates -— - PP "1y
o e = - =
= ES [—|#*i—|Th
Exchange database Auditor databases Auditor API Auditor SPA

triggers l Iread write

reads -)

o] | — | .

Helpers Bank API

Figure 3.1.: New Auditor architecture

3. Solution Design

The new architecture is dictated by the exchange’s database. The new program
flow is to be understood like this:

1. On an insert into the exchange database, the helpers get triggered to do
their work

2. After auditing, they write back their findings to the auditor database

3. Through the API, the SPA reads from the database constantly and presents
the auditors findings in it’s dashboard

Every database, API and SPA access is protected by a bearer token. This provides
basic security, enough that the data is protected inside the operater’s network.
The idea is, that the auditor is run behind a reverse proxy anyway, which means,
that the access control is managed at this front and not needed at the auditor’s
side.

3.2. Auditor database

The auditor’s database schema is based on the current behaviour of the helpers.
They generated JSON reports with different sections, these sections are now database
tables. The attributes of the tables reflect the data in the code.

For the database table’s insert triggers and the required event subscription in the
code, we followed the official PostgreSQL documentation and used the existing
GNUnet event subscription code base.

3.3. REST API

The procedure in designing was clear. First, start by documenting the needed
endpoints and afterwards, extend the auditor’s webserver codebase and at last,
update and extend the REST API. The needed endpoints were based on the in-
cident categories. Only for incidents and balances, a PATCH operation was pro-
vided. A bearer token for security will be added, for those requests that are not
designed to be publicly accessible. The format and responses from endpoints
were designed to adapt to existing GNU Taler APIs.

3. Solution Design

3.4. SPA

Since GNU Taler has different components with SPAs already, the idea was to
align the codebase and technologies, as well as it’s design, to improve maintain-
ability and recognition. So it’s code was partially taken from the GNU Taler mer-
chant [14] and adjusted to the auditor’s needs.

Taler Backoffice pos: Orders @LER

0107 (15:0:11)

New Paid Refunded Not wired Completed All]
& Orders
Date Amount Summary

2024/06/04 00:31:14 KUDOS:10 Magento store payment
2024/05/22 22:26:58 KUDOS:10
2024/05/22 22:25:52 KUDOS:10
2024/05/22 22:25:27 KUDOS:10
2024/05/22 22:14:56 KUDOS:10

load next page

Figure 3.2.: Merchant SPA

The main point was not the design, but the data to be presented. While the design
stayed the same, with the navigation on the left, the header on top and the content
in the middle, as well with the same looks, the real task was to connect that design
with the auditor’s data and present it in the best possible way, for the data to be
understood.

3. Solution Design

3.4.1. Data to Display

Data is divided into four categories, each representing a dashboard that is navi-
gatable like in figure 3.2.

The four dashboards are:

1.

Key figures, for the management and analysts, interested in tracking the
exchanges gains and losses

Critical incidents, where business impacting incidents are shown, tracked
and investigated.

Monitoring, exploring the protocol and network state finding difficulties
and operating problems

Detail state, to go in depth

4. Implementation

4.1. Overview

The real-time auditor stores results of it’s audits in PostgreSQL tables, every in-
consistency that the auditor looks for, has a designated table. These, along with
any other databases are set up when the auditor is started. Helpers are written
in C, and thus communicate with the PostgreSQL database via an interface based
on the libpq C library. All Helpers, except the deposit helper, only add or update
elements in the database or get them from it. The deposit helper can also delete
elements from it’s tables.

To see results of the real-time auditor, a webpage continuously fetches elements
form the auditor database. A small microhttp server handles requests to the
database.

Requests from the web are only allowed to GET elements or PATCH a specific
field that indicates whether an element should be sent again on subsequent GET
requests or not.

4.2. Implementation of tables

4.2.1. Overview

There are more than 20 tables the GNU Taler auditor writes to. That does, how-
ever, not equate the number of issues the auditor actually tracks.

The different tables do give an idea of what errors are recognized, but there are
also some minor issues that are not seperately categorized, and instead collected
in general tables. Other tables store no errors at all, but instead contain infor-
mation about the internal state of the auditor itself. And lastly, some contain
records about balances or reserves etc, which the auditor then compares to the
exchange’s records.

As a result of this, it is important to recognize that, when the auditor adds a new
row to one of it’s tables, it does not automatically mean some crime has been
committed, or fraud has taken place. This is why any critical developments are
surfaced in a single page application, for a human to review.

4. Implementation

In the following chapters, an overview and the structure is given over the newly
created tables the auditor writes to and what an entry in each of them means.

Some of the descriptions have been taken from the exchange’s documentation it-
self, while others have been provided or extended by Prof. Dr. Christian Grothoff.
These descriptions are also available seperately in the documentation of the GNU
Taler auditor REST API.

4.2.2. Monitoring Status
Arithmetic Inconsistencies

This table contains cases where the arithmetic of the exchange involving amounts
disagrees with the arithmetic of the auditor. Disagreements imply that either the
exchange made a loss (sending out too much money), or screwed a customer (and
thus at least needs to fix the financial damage done to the customer). The prof-
itable column is set to true if the arithmetic problem was be determined to be
profitable for the exchange, false if the problem resulted in a net loss for the ex-
change.

Losses Caused by Invalid Signatures

This table contains operations that the exchange performed, but for which the
signatures provided are invalid. Hence the operations are invalid and the amount
involved could be a loss for the exchange (as the involved parties could success-
fully dispute the resulting transactions).

Closure Lags

A closure lag happens if a reserve should have closed a reserve and wired (re-
maining) funds back to the originating account, but did not do so on time. Sig-
nificant lag may be indicative of fraud, while moderate lag is indicative that the
systems may be too slow to handle the load. Small amounts of lag can occur in
normal operation.

If closure lag is experienced, the administrator should check that the taler-exchange-
closer component is operating correctly.

Coin Inconsistencies

This table contains cases where the exchange made arithmetic errors found when
looking at the transaction history of a coin. The totals sum up the differences in

4. Implementation

amounts that matter for profit/loss calculations of the exchange. When an ex-
change merely shifted money from customers to merchants (or vice versa) with-
out any effects on its own balance, those entries are excluded from the total.

Denomination Key Validity Withdrawal Inconsistencies

This table highlights cases, where denomination keys were used to sign coins
withdrawn from a reserve before the denomination was valid or after it was al-
ready expired for signing. This doesn't exactly imply any financial loss for any-
one, it is mostly weird and may have affected the fees the customer paid.

Denominations Without Signatures

This table highlights denomination keys that lack a proper signature from the
taler-auditor-offline tool. This may be legitimate, say in case where the auditor’s
involvement in the exchange business is ending and a new auditor is responsible
for future denominations. So this must be read with a keen eye on the business
situation.

Deposit Confirmations

This table contains a list of deposits confirmations that an exchange provided to
merchants but failed to store in its own database. This is indicative of potential
fraud by the exchange operator, as the exchange should only issue deposit confir-
mations after storing the respective deposit records in its database. Not storing
the deposit data means that the exchange would not pay the merchant (pocketing
the money) or allow the customer to double-spend the money (which is naturally
also not good).

Note that entries could appear in this list also because the exchange database
replication is delayed. Hence, entries that are only a few seconds old might not
be indicative of an actual problem. If entries in this list are more than a few
seconds old, the first thing to check is whether or not the database replication
from the exchange is working properly.

Incoming Misattributions Inconsistencies

This table contains cases where the sender account record of an incoming wire
transfer differs between the exchange and the bank. This may cause funds to be
sent to the wrong account should the reserve be closed with a remaining balance,
as that balance would be credited to the original account.

4. Implementation

Purse not Closed Inconsistencies

This table highlights cases, in which either payer or payee did not finish their
part of a P2P payment. This caused a purse —— which may contain some money
— to reach its expiration date. However, the exchange failed to properly expire
the purse, which means the payer did not get their money back. The cause is
usually that the taler-exchange-expire helper is not running properly.

Refreshes Hanging

This table highlights cases, where a coin was melted but the reveal process was
not finished by the wallet. Usually, a wallet will do both requests in rapid suc-
cession to refresh a coin. This might happen, even if the exchange is operating
correctly, if a wallet goes offline after melting. However, after some time wallets
should in most cases come back online and finish the operation. If many opera-
tions are hanging, this might be indicative of a bug (exchange failing on reveal,
or wallets not implementing refresh correctly).

Reserve Balance Insufficient Inconsistencies

This table highlights cases where more coins were withdrawn from a reserve than
the reserve contained funding for. This is a serious compromise resulting in pro-
portional financial losses to the exchange.

Reserve Balance Summary Wrong Inconsistencies

This table highlights cases, where the exchange’s and auditors’ expectation of the
amount of money in a reserve differs.

Reserve in Inconsistencies

This table contains cases where the exchange’s and auditor’s expectation of amounts
transferred into a reserve differs. Basically, the exchange database states that a
certain reserve was credited for a certain amount via a wire transfer, but the au-
ditor disagrees about this basic fact. This may result in either a customer loosing
funds (by being issued less digital cash than they should be) or the exchange loos-
ing funds (by issuing a customer more digital cash than they should be).

Reserve not Closed Inconsistencies

This table highlights cases, in which reserves were not closed, despite being ex-
pired. As a result, customers that wired funds to the exchange and then failed to

4. Implementation

withdraw them are not getting their money back. The cause is usually that the
taler-exchange-closer process is not running properly.

Row Inconsistencies

This table highlights inconsistencies in a specific row of a specific table of the
exchange. Row inconsistencies are reported from different sources, and largely
point to some kind of data corruption (or bug). Nothing is implied about the seri-
ousness of the inconsistency. Most inconsistencies are detected if some signature
fails to validate. The affected table is noted in the ’table’ field. A description of
the nature of the inconsistency is noted in ‘diagnostic’.

Minor Row Inconsistencies

The section highlights inconsistencies where a row in an exchange table has a
value that is does not satisfy expectations (such as a malformed signature). These
are cause for concern, but not necessarily point to a monetary loss (yet).

Wire Format Inconsistencies

This table highlights cases where the wire transfer subject was used more than
once and is thus not unique. This indicates a problem with the bank’s implemen-
tation of the revenue API, as the bank is supposed to warrant uniqueness of wire
transfer subjects exposed via the revenue API (and bounce non-unique transfers).

Wire Out Inconsistencies

This table highlights cases where the exchange wired a different amount to a des-
timation account than the auditor expected.

4.2.3. Critical Errors
Emergencies

Emergencies are errors where the total value of coins deposited (of a particu-
lar denomination) exceeds the total value that the exchange remembers issu-
ing. This usually means that the private keys of the exchange were compromised
(stolen or factored) and subsequently used to sign coins off the books. If this hap-
pens, all coins of the respective denomination that the exchange has redeemed
so far may have been created by the attacker, and the exchange would have to
refund all of the outstanding coins from ordinary users. Thus, the risk exposure
is the amount of coins in circulation for a particular denomination and the max-
imum loss for the exchange from this type of compromise.

4. Implementation

The difference between emergencies and emergencies by count is how the audi-
tor detected the problem: by comparing amounts, or by counting coins. Theroret-
ically, counting coins should always detect an issue first, but given the impor-
tance of emergencies, the auditor checks both total amounts and total numbers
of coins (they may differ as coins may be partially deposited).

Emergencies By Count

Emergencies "by count" are cases where this type of money printing was detected
simply by counting the number of coins the exchange officially put into circula-
tion and comparing it to the number of coins that were redeemed. If the number
of redeemed coins is higher than the number of issued coins, the auditor reports
an emergency-by-count.

Fee Time Inconsistencies

This table highlights cases where validity periods associated with wire fees the
exchange may charge merchants are invalid. This usually means that the validity
periods given for the same type of fee are overlapping and it is thus unclear which
fee really applies. This is a sign of a serious misconfiguration or data corruption
as usually the exchange logic should prevent such a fee configuration from being
accepted.

4.2.4. Operational Status
Balances

Returns the various balances the auditor tracks for the exchange, such as coins
in circulation, fees earned, losses experienced, etc.

Historic Denomination Revenue

This endpoint is used to obtain a list of historic denomination revenue, that is the
profits and losses an exchange has made from coins of a particular denomination
where the denomination is past its (deposit) expiration and thus all values are
final.

Historic Reserve Summary

This endpoint highlights cases, where the exchanges expectation of the summary
in a reserve differs from its actual summary.

4. Implementation

Progress

This endpoint contains information about the auditing progress an auditor has
made.

Reserves

This endpoint is used to obtain a list of reserves.

Purses

This endpoint is used to obtain information about open purses.

Pending Denominations

This endpoint is used to obtain a list of balances for denominations that are still
active, that is coins may still be deposited (or possibly even withdrawn) and thus
the amounts given are not final.

4. Implementation

4.3. Interfaces

The old auditor would store findings in memory, until it saved them to a JSON file,
whereas the real-time version saves any findings in dedicated PostgreSQL tables
as soon as they are discovered. Then, the contents of the tables are displayed in
a webportal, that continuously updates.

The connection between the tables, the auditor and the webportal is facilitated
through two key interfaces; A REST API and a PostgreSQL C API.

A REST API allows the webportal to request table entries in JSON format from
the auditor, so that it can then display them. The webserver that receives those
requests must fetch elements from a database, and it does so with a PostgreSQL
C APL

HTTPD

RESTful JSON API
Used by httpd server

i

PG

PostgreSQL C Interface
Used by auditor helpers, httpd server, tests

Figure 4.1.: Interaction Between Auditor Components

4.3.12. REST API

Only GET and PATCH functionality is strictly required by the webportal, which is
described in more detail in chapter 4.5. For testing purposes, PUT and DELETE
functions were also added, and subsequently disabled.

4. Implementation

GET

All GET requests added as part of this project have the same structure. As an ex-
ample, with the endpoint http://localhost:8083/monitoring/emergency (provided
the auditor runs on the local machine of course) one receives at most 20 items,
starting with the newest, from the emergency table. The same logic applies to all
other inconsistencies - or tables - the auditor records.

Three query arguments, can be used to customize a response:

limit A signed integer. Specifies how many elements should be returned, relative
to the offset argument. The default is -20.

offset An unsigned integer. Specifies from which row onwards to return ele-
ments. The default is INT_MAX, meaning the latest element.

return_suppressed A boolean. If true, then all elements are returned, regard-
less of whether or not they were suppressed. The default is false.

Figure 4.2. demonstrates how the parameters limit and offset can be used to-
gether to retrieve any contiguous number of rows. In the example, the offset
is 40. If limit is chosen to be a negative number, like -20, the rows with row_ids
20 to 40 would be returned. A positive limit of ten would return rows 40 to 50.

auditor table [20,40] -

limit: -20 limit: 10

Figure 4.2.: Using offset and limit query arguments

http://localhost:8083/monitoring/emergency

4. Implementation

The ’bad-sig-losses’ table required some additional customisation. Two the addi-
tional query arguments ‘op’ of type string and 'use_op_spec_pub’ of type boolean
were added to the GET request. If 'use_op_spec_pub’is sent as an argument, then
an operation specific public key encoded with Crockford’s version of Base32 Crock-
ford Base32 must be given in the requests’ body.

With these arguments, the returned objects can be restricted to include only
those that contain a certain operation string (op’) or public key associated with
an operation ('use_op_spec_pub’). Both of these additional query arguments are
optional.

The balances GET request and database query, required the addition of a ’bal-
ance_key’ query argument. If this optional query argument is specified, only
balances containing this key are returned.

PATCH

As the auditor runs, some tables might accumulate many rows. To only show
rows that have not been seen yet, it is possible to 'supress’ old entries from the
webpage. A row that is suppressed is not shown again in the future unless specif-
ically requested.

This is done with a PATCH request, with which an entry of a table of the auditor
can be altered in a predetermined way. The only fields that can be changed with
this request are the 'suppressed’ fields of a table. As an example, in the table
emergency by count, to change the second rows’ suppressed value to true, one
would call the following endpoint: http://localhost:8083/monitoring/emergency-
by-count/2 (again, assuming the auditor runs locally)

In the body of the request, one can send a very simple JSON object that looks like
this:

"suppressed" : true

One could also unsuppress a row, by setting the value to false.

Not every endpoint can be suppressed. Chapter 4.5 further elaborates, how end-
points are divided into groups. Only entries in tables that store actual emergen-
cies or errors can be suppressed. It makes no sense to suppress internal consis-
tency information the auditor stores for itself.

http://localhost:8083/monitoring/emergency-by-count/2
http://localhost:8083/monitoring/emergency-by-count/2

4. Implementation

4.3.2. PostgreSQL C API

The PostgreSQL C API enables interaction between C and the auditors PostgreSQL
tables. This API is used by the webserver of the auditor as well as the helpers and
tests.

It exposes at most four functions for each table, one to get rows from the database,
one to add rows to it, one to update a row and one to delete rows. Not all tables
support all these functionalities.

Select

The query parameters from the the REST GET requests can be used here, to re-
trieve the correct elements with a SELECT statement. A JSON object is returned.

Insert

Allows one to insert an element into the PostgreSQL database via a database query.
Values like row_id and suppressed (where applicable) are automatically gener-
ated by PostgreSQL, and must not be inserted.

Update

For most tables, this function is closely related to the PATCH function in the REST
API. The only thing this function updates is the 'suppressed’ field of any table of
the auditor. Though, some tables do support updating other fields as well. This
way, an entry can be updated with new values, instead of creating a new one.

Delete

With this function, it’s possible to delete one row at a time from a given table.
Right now, this function is not actually used by any helpers, except for the deposit
helper, which deletes rows it already processed from it’s database.

4.4. TRIGGERS, LISTEN and NOTIFY

At the heart of the real-time logic are PostgreSQL triggers, that fire if new data is
added to certain tables of the exchange.

Under normal operation, helpers are dormant, butlisten to specific triggers through
event handlers. If a PostgreSQL trigger activates, these event handlers are called,
and the helper begins its analysis. Some tables in the exchange’s database trigger
more than one helper to wake up.

4. Implementation

4.5. Single Page Application

4.5.1. Description

The auditor continuously monitors changes in the exchange database, and writes
any suspicious behaviour in its database. A small website was built, to display
these results in an easily digestible way.

4.5.2. Technologies

Within GNU Taler, some systems already use single page applications, meaning
templates could be used to make this single page application similar to other
components’ frontends. As a result we used Preact, TypeScript and Scss. As for
the used server technologies, node.js and the Taler internal webserver, which is
based on microhttp, were used.

4.5.3. Implementation

Taler Backoffice Key figures C(jZ\LER
Version (0.1} y g =d
Finding Count Gain/ Helper coin
Loss Balance Value

Misattribution in inconsistency 0 0 Total recoup loss TESTKUDOS 0
Coin inconsistency 0 0 Coin refund fee revenue TESTKUDOS 0
Reserve in inconsistency 0 0 Coin deposit fee revenue TESTKUDOS 0
Bad sig losses 0 0 Coin melt fee revenue TESTKUDOS 0
Amount arithmetic inconsistency 0 0 Coin irregular loss TESTKUDOS 0
Wire format inconsistency 0 0 Total escrowed TESTKUDOS 0
Wire out inconsistency 0 0 Coins reported emergency risk by amount TESTKUDOS 0
Reserve balance summary wrong 0 0 Coins emergencies loss by count TESTKUDOS 0
inconsistency

Coins emergencies loss TESTKUDOS 0

Coins total arithmetic delta minus TESTKUDOS 0

Coins total arithmetic delta plus TESTKUDOS 0
Summary Value

Total refresh hanging TESTKUDOS 0
Total gainfloss 0
Pending gainfloss 0 Helper reserve
Transaction count 0 Balance Value

] Reserves total arithmetic delta minus TESTKUDOS 0

Transactions pending 0

Reserves total arithmetic delta plus TESTKUDOS 0

Figure 4.3.: Dashboard key figures

Data from the auditor is divided into several categories. Key figures displays gen-
eral info about the exchange, the critical errors and inconsistencies tabs show
suspicious things the auditor detected in it’s audits. Operating status shows sta-
tus information about the auditor itself. Because all tables in the auditor database
have different columns, they do not always display the same information, even if
they are in the same category.

4. Implementation

4.5.4. Authentication

Token required

Need the access token for the APL

Access Token

Confirm

Figure 4.4.: Bearer token implementation

Users of the webportal can add a bearer token via a textfield, so the auditor API
can be accessed. When first launching the site, a popup asks for the token and
validates it, before granting access to the application. The implementation can
be seen in figure 4.4..

4.5.5. Dashboards

The implementation of the dashboards per group was organized per their data.
The focus was on showing the most important values directly, but still displaying
the datain full and allowing for a complete analysis. In the key figures dashboard,
we see all findings with their count and their gains or losses (see figure 4.3.).

Taler Backoffice it C\
tackoffice Critical errors (EﬁLER

Finding Count Expiration dates
Fee time inconsistency] 0
Emergency 0 0]
Emergency by count 0 0

Reserve balance insufficient inconsistency 0 0

Figure 4.5.: Dashboard critical error

For the critical errors, the focus lay on presenting the worst possible errors.

4. Implementation

Taler Backoffice i TALER
e Operating status ((”/

Finding Count Time difference () Diagnostic
Row inconsistency 0 0
Purse not closed inconsistencies 0 o
Reserve not closed inconsistency 0 0
Denominations without sigs 0 o
Deposit confirmation 0 0
Denomination key validity withdraw inconsistency 0 o
Refreshes hanging 0 0
Historic reserve summary 0 o

Figure 4.6.: Dashboard operating status

The operation’s view dashboard shall give a quick overview over the state of the
network and it’s operating status. Thus it displays the counts of operating status
findings, their potential time difference and diagnostic strings.

Taler Backoffice Inconsistencies @hLER
Version (0.1) o
/Amount arithmetic inconsistencies Bad signature losses Closure Lags Coin inconsistencies
Denominations key validity Denominations without signature Denominations pending Deposit confirmations
Emergencies Emergencies by count Fee time inin
Purses not closed Purses Refreshes hanging Reserve balances insufficient
Reserve balances summary wrong Reserves in Reserves not closed Reserves
Row inconsistencies Row minor inconsistencies ‘Wire out format inconsistencies ‘Wire out inconsistencies

Figure 4.7.: Dashboard inconsistencies

Here, all possible auditor findings are displayed and can be investigated further,
leading to a full view of each table status.

Balances (GRer

Back

@ Balances

Row id Balance key Balance value Suppressed
26 total_recoup_loss TESTKUDOS:0 false
25 coin_refund_fee_revenue TESTKUDOS:0 false
24 coin_deposit_fee_revenue TESTKUDOS:0 false
23 coin_melt_fee_revenue TESTKUDOS:0 false
22 coin_irregular_loss TESTKUDOS:0 false
21 total_escrowed TESTKUDOS:0 false
20 coin_balance_risk TESTKUDOS:0 false
19 coins_reported_emergency_risk_by_amount TESTKUDOS:0 false
18 coins_emergencies_loss_by_count TESTKUDOS:0 false

Figure 4.8.: Finding detail view

5. Discussion

5.1. Approach

Adding these tables and functions amounted to so many new files and additional
pieces of code across many existing ones, that a python script was used to gener-
ate some of the required C code. This was especially easy for the PATCH and
DELETE HTTP functions, since they needed no customization, except for the
name of the table they affected. Adapting the script to produce code for the GET
and PUT functions was more difficult, and still required some manual interven-
tion afterwards.

To actually generate code, the scripts read from the sql files that contained the au-
ditor tables, extracted information like column names and types or table names
and filled those into string templates. However, because C structures like hashes,
EdDSA [15] signatures or EADSA keys are all stored as byte arrays in PostgreSQL,
the scripts could not infer those types when generating C code that required
them. This had to be corrected manually.

The documentation of the REST JSON API of the auditor was also generated with
the help of a python script. It too, worked by extracting relevant table columns,
types and names from SQL files and inserting them into a string template. Though
significant changes and additions were necessary in the documentation as well.

5. Discussion

5.2. Future Work

Despite the progress made in this project, there are also a lot of things that could
be addressed in future projects.

The webportal, for example, could display more detailed information still, and
perhaps enjoy some usability upgrades. Also, the webpage could, instead of peri-
odically polling the auditor database, receive notifications from the HTTP server
if new data is available, and then fetch it when needed. Another useful feature the
auditor could provide, is using push notifications or emails to alert exchange op-
erators as soon as emergencies are detected. Also, a proper dataset could be set
up, to further fine tune the frontend by analyzing the data and finding further in-
sights. A big difference could potentially make the extension of the auditor’s data
model by historical auditor data to show the development, usage and operating
history of the exchange.

The tests to check if the helpers are working correctly could also be improved.
Some existing tests are not working properly, and should be fixed. Perhaps more
tests could be added to find more edge cases, or constellations which are not
yet caught by existing ones. Like finding auditor idempotency cases and storing
them.

Work could be done to parallelize the helpers’ analysis, with the intention of
making them faster. Either, parallelization could be done solely on the CPU,
or some calculations could even be offloaded to the GPU and free up resources
on the main processor. Though parallelization on the GPU might promise large
performance gains, implementing the necessary features would not be trivial.
Some of the helpers’ responsibilities include verifying cryptographic signatures,
which involves modular exponentiation with very large integer numbers. GPUs
are not designed for such operations, and even though they might be able to verify
many signatures at once, that advantage of parallelization might not be enough.
Also, GPU programming is often generalized through frameworks like OpenGL
/ OpenCL [16]. This universal applicability comes with additional performance
losses, compared to CPUs. Highly optimized algorithms developed specifically
for a given GPU architecture, however, could perhaps yield acceptable results.
This could be subject of a future paper.

6. Conclusion

This thesis not only showed the necessities a payment system auditor needs to
have, but even more so, the state of existing payment methods and the limits of
most modern technology implementations. This current auditor is now in a state
where it can be used to test its production readiness and can be operated to audit
instances of exchanges. Thus, we were able to add substantial improvements to
the auditors capabilities and usability.

We believe that accountability is not just a commodity, but a necessity, especially
when it comes to modern payment systems. We also believe that GNU Taler, and
its auditor can deliver precisely these things. It seems however, that not everyone
shares this simple notion with us.

Right now, the EU considers launching the Digital Euro [17], which is supposed
to be a digital alternative to the Euro; in that sense, it would be much like GNU
Taler. Crucially though, where the Digital Euro differs from GNU Taler, is the
support for anonymous transitive offline payments. Such offline payments are
virtually impossible to audit or conclusively verify, as a device that is offline may
never be connected to the Internet, thus depriving auditors of the opportunity
to inspect its state in a timely fashion. The problem is enhanced by the need to
rely on hardware security modules with a horrible track record [18] as the CAP
theorem by Eric Brewer, Seth Gilbert and Nancy Lynch [19,20] makes it clear that
maintaining consistency merely via software and protocols is impossible in this
setting.

We can confidently say, that GNU Taler is the payment system we want to use and
want to be used by society, going forward in the era of digital money. Or in other
words: we know of no current existing payment system that protects data privacy,
ensures security and offers a state of the art wallet and that we can put our trust
in, due its licensing model, apart from GNU Taler. The GNU Taler auditor is an
important part of the answer why society can trust the system, and other digital
currency solutions should be evaluated with this level of auditability in mind.

All this is to say, that we think GNU Taler could help solve some of the shortcom-
ings of payment systems today, and that the auditing philosophy behind it plays
a vital part in that.

Erklarung der Diplomandinnen und Diplomanden
Deéclaration des diplomant-e-s

Selbstandige Arbeit / Travail autonome

Ich bestdtige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbstandig durch-

gefuihrt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollstandig aufgefiihrt. Simtliche Inhalte, die nicht von mir stammen, sind mit dem genauen

Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thése de bachelor de maniére autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidé-e dans mon travail sont intégralement mentionnées dans
I’annexe de ma thése. Tous les contenus non rédigés par mes soins sont diiment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom

Datum/Date

Unterschrift/Signature

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen.
Ce formulaire doit étre joint au rapport de la thése de bachelor.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Erklarung der Diplomandinnen und Diplomanden
Deéclaration des diplomant-e-s

Selbstandige Arbeit / Travail autonome

Ich bestdtige mit meiner Unterschrift, dass ich meine vorliegende Bachelor-Thesis selbstandig durch-

gefuihrt habe. Alle Informationsquellen (Fachliteratur, Besprechungen mit Fachleuten, usw.) und ande-
ren Hilfsmittel, die wesentlich zu meiner Arbeit beigetragen haben, sind in meinem Arbeitsbericht im
Anhang vollstandig aufgefiihrt. Simtliche Inhalte, die nicht von mir stammen, sind mit dem genauen

Hinweis auf ihre Quelle gekennzeichnet.

Par ma signature, je confirme avoir effectué ma présente thése de bachelor de maniére autonome.
Toutes les sources d’information (littérature spécialisée, discussions avec spécialistes etc.) et autres
ressources qui m’ont fortement aidé-e dans mon travail sont intégralement mentionnées dans
I’annexe de ma thése. Tous les contenus non rédigés par mes soins sont diiment référencés avec
indication précise de leur provenance.

Name/Nom, Vorname/Prénom &Mt[r(“- Py &d”" .. (/""w-c
Datum/Date Qg 05 ZOZ?
Unterschrift/Signature CZLL—-

Dieses Formular ist dem Bericht zur Bachelor-Thesis beizulegen.
Ce formulaire doit étre joint au rapport de la thése de bachelor.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Bibliography

[1] Bernie Madoff: Who He Was, How His Ponzi Scheme Worked — investope-
dia.com. https://www.investopedia.com/terms/b/bernard-madoff .asp.
[Accessed 10-06-2024].

[2] Condé Nast. How the Biggest Fraud in German History Unravelled
— newyorker.com. https://www.newyorker.com/magazine/2023/03/06/
how-the-biggest-fraud-in-german-history-unravelled, 2023. [Ac-
cessed 10-06-2024].

[3] Sam Bankman-Fried and the FTX collapse, explained —
nbcnews.com. https://www.nbcnews.com/tech/crypto/
sam-bankman-fried-crypto-ftx-collapse-explained-rcnab7582. [Ac-
cessed 10-06-2024].

[4] Derek Saul. First Republic Bank Failure: A Timeline Of What
Led To The Second-Largest Bank Collapse In U.S. History —
forbes.com. https://www.forbes.com/sites/dereksaul/2023/05/01/
first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-
[Accessed 10-06-2024].

[5] GNU Taler team. Gnu taler website. https://taler.net/de/. Accessed:
2024-06-03.

[6] Florian Dold. The gnu taler system: practical and provably secure elec-
tronic payments. (le systeme gnu taler: Paiements électroniques pratiques
et sécurisés). https://api.semanticscholar.org/CorpusID:195785269, 2019.

[7] Postgresql listen/notify. https://www.postgresql.org/docs/current/
sql-notify.html. [Accessed 10-06-2024].

[8] Taler Systems team. Taler systems website. https://www.taler-systems.
com/en/electronic-cash.html. Accessed: 2024-06-03.

[9] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

[10] Wikipedia. Blind signature. https://en.wikipedia.org/wiki/Blind_
signature. Accessed: 2024-06-03.

https://www.investopedia.com/terms/b/bernard-madoff.asp
https://www.newyorker.com/magazine/2023/03/06/how-the-biggest-fraud-in-german-history-unravelled
https://www.newyorker.com/magazine/2023/03/06/how-the-biggest-fraud-in-german-history-unravelled
https://www.nbcnews.com/tech/crypto/sam-bankman-fried-crypto-ftx-collapse-explained-rcna57582
https://www.nbcnews.com/tech/crypto/sam-bankman-fried-crypto-ftx-collapse-explained-rcna57582
https://www.forbes.com/sites/dereksaul/2023/05/01/first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-collapse-in-us-history/
https://www.forbes.com/sites/dereksaul/2023/05/01/first-republic-bank-failure-a-timeline-of-what-led-to-the-second-largest-bank-collapse-in-us-history/
https://taler.net/de/
https://www.postgresql.org/docs/current/sql-notify.html
https://www.postgresql.org/docs/current/sql-notify.html
https://www.taler-systems.com/en/electronic-cash.html
https://www.taler-systems.com/en/electronic-cash.html
https://en.wikipedia.org/wiki/Blind_signature
https://en.wikipedia.org/wiki/Blind_signature

Bibliography

[11] GNU Taler team. Gnu taler developer manual. https://docs.taler.net/
taler-developer-manual.html. Accessed: 2024-06-03.

[12] LibEuFin; GNU Taler. https://docs.taler.net/libeufin/index.html,
2014. [Accessed 10-06-2024].

[13] GNU Taler team. Gnu taler protocol descriptions. https://git.taler.net/
exchange.git/tree/doc/system/taler. Accessed: 2024-06-06.

[14] GNU Taler team. Gnu taler merchant backoffice codebase. https://git.
taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui.
Accessed: 2024-06-05.

[15] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic Engi-
neering, 2(2):77-89, Aug 2012.

[16] OpenCL - The Open Standard for Parallel Programming of Heterogeneous
Systems — khronos.org. https://www.khronos.org/opencl/. [Accessed 12-
06-2024].

[17] European Central Bank. Digital euro. https://www.ecb.europa.eu/euro/
digital_euro/html/index.en.html. [Accessed 10-06-2024].

[18] Researchers Discover Way to Hack Hardware Security Mod-
ule, Gain Access to Cryptographic Keys. https://www.
darkreading.com/identity-access-management-security/
researchers-discover-way-to-hack-hardware-security-module-gain-access-to-crypt.
[Accessed 10-06-2024].

[19] E.A. Brewer. Towards robust distributed systems, folien zur keynote des 19.
acm sigact-sigops symposium on principles of distributed computing, port-
land, oregon, usa, 2000. https://people.eecs.berkeley.edu/ brewer/
cs262b-2004/PODC-keynote.pdf. Accessed: 2024-06-04.

[20] Nancy Lynch Seth Gilbert. Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services. ACM Transactions on Com-
puter Systems, 2002.

https://docs.taler.net/taler-developer-manual.html
https://docs.taler.net/taler-developer-manual.html
https://docs.taler.net/libeufin/index.html
https://git.taler.net/exchange.git/tree/doc/system/taler
https://git.taler.net/exchange.git/tree/doc/system/taler
https://git.taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui
https://git.taler.net/wallet-core.git/tree/packages/merchant-backoffice-ui
https://www.khronos.org/opencl/
https://www.ecb.europa.eu/euro/digital_euro/html/index.en.html
https://www.ecb.europa.eu/euro/digital_euro/html/index.en.html
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://www.darkreading.com/identity-access-management-security/researchers-discover-way-to-hack-hardware-security-module-gain-access-to-cryptographic-keys
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

List of Figures

1.1.

2.1.

2.2.
2.3.

24.

2.5.

3.1

3.2.

4.1.

4.2.
4.3.

44.

4.5.
4.6.

4.7.

4.8.

Al
A.2.

Logoof GNU Taler [5] v v v v v v it e et e e 2
Overview of the taler architecture[8] 7
Old Auditor architecture simplified 11
Overview of states and state changes of the reserve [13] 12
Overview of states and state changes of coins [13] 13
Overview of states and state changes of deposits [13] 15
New Auditor architecture 23
MerchantSPA e 25
InterfaceDetail 34
Limit and Offset Argument 35
Dashboard key figures 38
Bearer token implementation 000 39
Dashboard criticalerror, 39
Dashboard operating status 40
Dashboard inconsistencies, 40
Findingdetailview 40
Jirabacklog 52

Task Helper-Aggregation 52

Glossary

API Application Programming Interface (API) Enables a way for different com-
ponents of a program to communicate with eachother

CPU Central Processing Unit (CPU) The main processor in a computer, which
handles most tasks

Crockford Base32 Crockford Base32 A special version of a common encoding
scheme. Crockford’s version is easy for humans and machines to read and
type, because it is less ambiguous.

GPU Graphics Processing Unit (GPU) A dedicated processor intended to accel-
erate image processing or parallel tasks

JSON JavaScript Object Notation (JSON) A well-known, human-readable and
standardised format to store and transmit data in

REST Representational State Transfer (REST) An easily scalable and well-defined
software architectural style with a clear client / server relationship

SPA Single Page Application (SPA) A webpage, that serves dynamic content in-
side the current page, instead of loading completely new pages

SQL Structured Query Language (SQL) A language used interact with various
database systems, like PostgreSQL

A. Appendices

Project management A.1
Auditor REST APT A.2
Python scripts A.3

A.1. Project management

A.1.1. Definition

At start of the project, we decided upon which project management model we
wanted use, how it is implemented, tracked and how it will be documented. As
the goals and scope were set, we were ready to define the details. The stakehold-
ers, project members and project roles were decided upon projectlaunch and are
defined in the titel page. The artifacts to be delivered were the following, which
is the default for every thesis at the BFH:

Source code

Thesis report

Poster

Book entry

Video

Presentation
The following deadlines were presented by the bfh and we had to adhere:
Till 19.04.2024: Meeting with the expert
28.05.2024: Delivery poster

10.06.2024: Delivery book entry
13.06.2024: Delivery video

13.06.2024: Delivery thesis report

13.06.2024: Delivery source code

A. Appendices

14.06.2024: Holding presentation & Techday
26.06.2024: Bachelor thesis defence

Risks & mitigations
We identified the following risks for our project:
Deadline risk

Lack of time

Lack of knowledge

Absences

We had negligible risk of losing our work on artifacts, as we used Git as a software,
to distribute our work done to various systems at all times. Thus our main risk
become the risk of not meeting deadlines to the time or resource issues.

A.1.2. Methodology

Our approach was to keep the project management part as simple, straight for-
ward and small as possible, as we have a very small project team and only a short
project time frame.

To absorb possible shortcomings of our approach, we prioritized speed, agility
and in person exchange above anything else. So decided upon using Scrum, not
only as we have a lot of experience in it and we also have a certified Scrum Mas-
ter in our team, but moreso because we wanted it’s agility and speed. We wanted
the ability to react quickly to meet approaching deadline expectations, potential
failures and self set dangers. Thus we set our Sprint duration to one week and
planned our sprint planning, review and retrospective meetings on each Wednes-
day in the whole project duration. These meetings were to be held in person with
the whole project team attending, meaning professors and students, in Christian
Grothoft’s office at BFH’s Rolex building in 2502 Biel, Hoheweg 82.

A. Appendices

A.1.3. Organization

Projekte~ Filerv Dashboards v Teams

Agps v

B e e

Projekte / Mein Kanban-Projekt

Vorgange

[Ve Kanban okt
Softuarepreit

Schlvssel

PRTGTA21

PRIGTA-20

PRIGTA-19

PRIGTAIS

PRIGTAT7

PRIGTA 16

PRIGTATS

PRTGTA- 1

PRIGTA-13

pRIGTA-12

pRIGTAN

PRIGTA10

PRIGTAS Create project-plan

Figure A.1.: Jira backlog

Autor

bis26v0n 26 €

[rcweo | (@

FeRnGY

FeRTGY

FeRTGY

FeRTGY.

FeRnGY

FeRTGY

FeRTGY

FeRTGY.

v Zusllen Vorgingen

|e @ 0 @

USTENANSICHT = DETAILANSICHTZD ==+

STANDARD oL
Lesung Erstelt ¥ m-
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fert 5. Marz 2024
Fert 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024
Fertig 5. Marz 2024

After deciding the project methodology and putting the procedure in place, we
quickly created our backlog. We defined each tasks with its sub tasks, specified
the definition of done and the expected results. We did not go as far as to poker
for story points estimates, as they did not really matter to us, because we just
defined deadlines of the task’s completion and worked with them, removing the
need for extra project management overhead.

naine £ wicnmtogen QPRI
2 zouese

8 sicdog

Helper-Aggregation

@ Arhangen & Untergeordneten Vorgang hinaigen 69 Vorgang vernken
O tows
Beschreibu
B Kelender ey T
00D:
E « Alle Sub-Tasks erlecigt
« Volst vieb des Helpers und der gelosten Probleme darin n Thesis

2 vorgange
+

Ansicht hinzufigen
Untergeordrnete Vorgange

ENTWICKLUNG

<> Code

O mEns Helper

© wren Helper

© sena Helper
O mwEns Helper

© sriGwa Helper

© mmnar Helper-

-Aggregation

-Aggregation

Aggregation

-Aggregation

-Aggregation

-Aggregation

Datentabellen

DB CRUD

REST AP

Tests

sPA

Thesis

o @ rexnce

® rennce
- @ reney
® rexnce

Figure A.2.: Task Helper-Aggregation

In Arbeit v

% Actionen v

ZuruckzurSuche 13von 13 A

8O b <

As for project communication, we agreed on using instant messengers and e-mail
as part of our strategy.

A. Appendices

A.1.4. Execution

We took note of our project meetings to keep a hold of todos. Here are some
excerpts:

8.5.2024
Remove ppdc in code

Mark todos

15.5.2024
Poster:

More pictures (auditor flow)

Focus not on Taler, but the auditor and auditor architecture
Less text

Last section benefits, badly worded

Don't describe the history, but the new state

Christian checks helper wire

Book deadline: ask BFH office

API spec in appendices ok

Libeufin tables: fix

Deposit tables: fix

22.5.2024
Taler system architecture (illustration by taler team)
Real-time auditing for gnu taler

Example screen poster https://uebermedien.de/wp-content/uploads/2021/02/2021-
02-08-wirecard.jpg

Example Bernie Madoff

A. Appendices

5.6.2024

No content: 204 / 200 or empty array

Fixme’s: in code & doc

Remove suppress for no incidents tables

Remove internals from api

Endpoint sentences adjusting (remove api and sentence to endpoint)
Code indent 2 spaces

Wire out inconsistency

Updates for same incident -> suppressed false

RESTful API doc structure

Spa frontend: dashboardl progress & balances & details tables, dasboard? criti-
cals, dashboard3 lags, dashboard4 detailed state (reserve balances/active purse/-
coin balances)

Graphic adjustments: architecture

3.2 structure after business

4.2.2 remove screenshots and info structure, only text
Remove 6.1

Figure 2.2 label: simplified

Auditor > auditor

A.1.5. Completion

We were able to complete the project and meet all deadline requirements. Our
strategy and procedures hold strong and most importantly, managed to be suc-
cessful on all set goals.

A.2. Auditor REST API

1.6. The Auditor RESTful JSON API

The API specified here follows the general conventions for all details not specified in the individual requests. The glossary defines

all specific terms used in this section.

Table of Contents

« Authentication

¢ Obtaining Auditor Version

e Deposit Confirmations

* Monitoring API
o Fee Time Inconsistencies
o Emergencies

o Emergencies By Count

o Row Inconsistencies
o Reserve In Inconsistencies

o Purse Not Closed Inconsistencies

o Reserve Not Closed Inconsistencies

o Reserve Balance Insufficient Inconsistencies

o Invalid Signature Losses
o Coin Inconsistencies

o Denominations Without Signatures

o Misattribution In Inconsistencies

o Deposit Confirmations

o Denomination Key Validity Withdraw Inconsistencies

o Amount Arithmetic Inconsistencies

o Wire Format Inconsistencies

o Refreshes Hanging
o Closure Lags

o Wire Out Inconsistencies

o Reserve Balance Summary Wrong Inconsistencies

o Row Minor Inconsistencies

e Monitoring Auditor Status

o Balances

o Historic Denomination Revenue

o Denomination Pending

o Historic Reserve Summary
o Reserves

© Purses

© Progress

e Complaints

1.6.1. Authentication

Each auditor instance has separate authentication settings for the private API resources of that instance.

Currently, the APl supports two main authentication methods:

e external: With this method, no checks are done by the auditor backend. Instead, a reverse proxy / APl gateway must do all
authentication/authorization checks.

e token: With this method, the client must provide a Authorization: Bearer $TOKEN header, where $TOKEN is a secret
authentication token configured for the instance which must begin with the RFC 8959 prefix.

1.6.2. Obtaining Auditor Version

This endpoint is used by merchants to obtain a list of all exchanges audited by this auditor. This may be required for the merchant

to perform the required know-your-customer (KYC) registration before issuing contracts.

GET /config

Get the protocol version and some meta data about the auditor. This specification corresponds to current protocol being

version 1.
Response:

200 OK:

The auditor responds with an AuditorVersion object. This request should virtually always be successful.

Details:

iI= Contents

1.6.1. Authentication

1.6.2. Obtaining Auditor Version

1.6.3. Deposit Confirmations

1.6.4. Monitoring API

1.6.4.1. Fee Time Inconsistencies

1.6.4.2. Emergencies

1.6.4.3. Emergencies By Count

1.6.4.4. Row Inconsistencies

1.6.4.5. Reserve In Inconsistencies

1.6.4.6. Purse Not Closed Inconsistencies

1.6.4.7. Reserve Not Closed Inconsistencies

1.6.4.8. Reserve Balance Insufficient

Inconsistencies
1.6.4.9. Invalid Signature Losses
1.6.4.10. Coin Inconsistencies

1.6.4.11. Denominations Without Signatures

1.6.4.12. Misattribution In Inconsistencies

1.6.4.13. Deposit Confirmations

1.6.4.14. Denomination Key Validity Withdraw

Inconsistencies

1.6.4.15. Amount Arithmetic Inconsistencies

1.6.4.16. Wire Format Inconsistencies

1.6.4.17. Refreshes Hanging
1.6.4.18. Closure Lags

1.6.4.19. Wire Out Inconsistencies

1.6.4.20. Reserve Balance Summary Wrong

Inconsistencies

1.6.4.21. Row Minor Inconsistencies

1.6.5. Monitoring Auditor Status

1.6.5.1. Balances

1.6.5.2. Historic Denomination Revenue

1.6.5.3. Denomination Pending

1.6.5.4. Historic Reserve Summar

1.6.5.5. Reserves
1.6.5.6. Purses

1.6.5.7. Progress

1.6.6. Complaints

interface AuditorVersion {
// libtool-style representation of the Taler protocol version, see
// https://www.gnu.org/software/Libtool/manual/html_node/Versioning.html#Versioning
// The format is "current:revision:age"”. Note that the auditor
// protocol is versioned independently of the exchange's protocol.
version: string;

// URN of the implementation (needed to interpret 'revision’ in version).
// @since v, may become mandatory in the future.

implementation?: string;

// Return which currency this auditor is auditing for.
currency: string;

// EdDSA master public key of the auditor.
auditor_public_key: EddsaPublicKey;

// EdDSA master public key of the exchange.
// Added 1in protocol vi.
exchange_master_public_key: EddsaPublicKey;

O Note

This endpoint is still experimental (and is not yet implemented at the time of this writing).

1.6.3. Deposit Confirmations

Merchants should probabilistically submit some of the deposit confirmations they receive from the exchange to auditors to ensure
that the exchange does not lie about recording deposit confirmations with the exchange. Participating in this scheme ensures that
in case an exchange runs into financial trouble to pay its obligations, the merchants that did participate in detecting the bad
behavior can be paid out first.

PUT /deposit-confirmation

Submits a DepositConfirmation to the exchange. Should succeed unless the signature provided is invalid or the exchange is
not audited by this auditor.

Response:

200 Ok:

The auditor responds with a DepositAudited object. This request should virtually always be successful.
403 Forbidden:

The signature on the deposit confirmation is invalid.
410 Gone:

The public key used to sign the deposit confirmation was revoked.

Details:

interface DepositAudited {
// TODO: maybe change to 204 No content instead?

}

interface DepositConfirmation {

// Hash over the contract for which this deposit is made.
h_contract_terms: HashCode;

// Hash over the extensions.
h_extensions: HashCode;

// Hash over the wiring information of the merchant.
h_wire: HashCode;

// Time when the deposit confirmation confirmation was generated.
timestamp: Timestamp;

// How much time does the merchant have to issue a refund
// request? Zero 1if refunds are not allowed.
refund_deadline: Timestamp;

// By what time does the exchange have to wire the funds?
wire_deadline: Timestamp;

// Amount to be deposited, excluding fee. Calculated from the
// amount with fee and the fee from the deposit request.
amount_without_fee: Amount;

// Array of public keys of the deposited coins.
coin_pubs: EddsaPublicKey[];

// Array of deposit signatures of the deposited coins.
// Must have the same length as coin_pubs.
coin_sigs: EddsaSignature[];

// The Merchant's public key. Allows the merchant to Llater refund
// the transaction or to inquire about the wire transfer identifier.
merchant_pub: EddsaPublicKey;

// Signature from the exchange of type
// TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT.
exchange_sig: EddsaSignature;

// Public signing key from the exchange matching exchange_sig.
exchange_pub: EddsaPublicKey;

// Master public key of the exchange corresponding to master_sig.
// Identifies the exchange this is about.

// @deprecated since v1 (now ignored, global per auditor)
master_pub: EddsaPublicKey;

// When does the validity of the exchange_pub end?
ep_start: Timestamp;

// When will the exchange stop using the signing key?
ep_expire: Timestamp;

// When does the validity of the exchange_pub end?
ep_end: Timestamp;

// Exchange master signature over exchange_sig.
master_sig: EddsaSignature;

O Note

This endpoint is still experimental (and is not yet implemented at the time of this writing). A key open question is

whether the auditor should sign the response information.

1.6.4. Monitoring API

The following entries specify how to access the results of an audit.

For most endpoints, rows may be marked as ‘suppressed’ to not send them again upon subsequent GET requests. To do this, a
GenericAuditorMonitorPatchRequest object is used in the respective PATCH request.

Details:

interface GenericAuditorMonitorPatchRequest {

// If true, subsequent GET requests will not return this element by default
suppressed : boolean;

1.6.4.1. Fee Time Inconsistencies

This section highlights cases where validity periods associated with wire fees the exchange may charge merchants are invalid. This
usually means that the validity periods given for the same type of fee are overlapping and it is thus unclear which fee really
applies. This is a sign of a serious misconfiguration or data corruption as usually the exchange logic should prevent such a fee
configuration from being accepted.

GET /monitoring/fee-time-inconsistency

Get a list of fee time inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of FeeTimelnconsistency objects. If no elements could be found, an empty
array is returned

Details:

interface FeeTimeInconsistency {

// Row ID of the fee in the exchange database.
row_id : Integer;

// Specifies the wire method for which the fee 1is inconsistent.
type : string;

// Gives the start date of the inconsistent fee.
time : Timestamp;

// Human readable description of the problem.
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/fee-time-inconsistency/$SERIAL_ID

This endpoint is used to suppress selected elements of fee time inconsistencies. Updates the ‘suppressed’ field of a fee time
inconsistency element with row ID $SERIAL_ID.

Request:

The body must be a GenericAuditorMonitorPatchRequest.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.2. Emergencies

This endpoint is used to obtain a list of emergencies.

Emergencies are errors where the total value of coins deposited (of a particular denomination) exceeds the total value that the
exchange remembers issuing. This usually means that the private keys of the exchange were compromised (stolen or factored) and
subsequently used to sign coins off the books. If this happens, all coins of the respective denomination that the exchange has
redeemed so far may have been created by the attacker, and the exchange would have to refund all of the outstanding coins from
ordinary users. Thus, the risk exposure is the amount of coins in circulation for a particularrdenomination and the maximum loss

for the exchange from this type of compromise.

The difference between emergencies and emergencies by count is how the auditor detected the problem: by comparing amounts,
or by counting coins. Theroretically, counting coins should always detect an issue first, but given the importance of emergencies,

the auditor checks both total amounts and total numbers of coins (they may differ as coins may be partially deposited).

GET /monitoring/emergency

Get a list of emergencies stored by the auditor.

The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of Emergency objects. If no elements could be found, an empty array is

returned

Details:

interface Emergency {

// Unique row identifier
row_id : Integer;

// Hash of denomination public key
denompub_h : HashCode;

// What is the total value of all coins of this denomination that
// were put into circulation (and thus the maximum Loss the

// exchange may experience due to this emergency).

denom_risk : Amount;

// What is the loss we have experienced so far (that

// 1s, the amount deposited in excess of the amount

// we issued).

denom_loss : Amount;

// When did the exchange start issuing coins in this the denomination.
deposit_start : Timestamp;

// When does the deposit period end for coins of this denomination.
deposit_end : Timestamp;

// What is the value of an individual coin of this denomination.
value : Amount;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/emergency/$SERIAL_ID

This endpoint is used to suppress select elements of emergencies. Update the ‘suppressed’ field of an emergency element
with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.3. Emergencies By Count

This endpoint is used to obtain a list of emergencies by count.

Emergencies are errors where more coins were deposited than the exchange remembers issuing. This usually means that the
private keys of the exchange were compromised (stolen or factored) and subsequently used to sign coins off the books. If this
happens, all coins of the respective denomination that the exchange has redeemed so far may have been created by the attacker,
and the exchange would have to refund all of the outstanding coins from ordinary users. Thus, the risk exposure is the amount of

coins in circulation for a particular denomination and the maximum loss for the exchange from this type of compromise.

Emergencies "by count” are cases where this type of money printing was detected simply by counting the number of coins the
exchange officially put into circulation and comparing it to the number of coins that were redeemed. If the number of redeemed

coins is higher than the number of issued coins, the auditor reports an emergency-by-count.

GET /monitoring/emergency-by-count

Get a list of emergencies by count stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of EmergencyByCount objects.

Details:

interface EmergencyByCount {

// Row ID of the fee in the exchange database.
row_id : Integer;

// Hash of the public denomination key to which the
// emergency applies.
denompub_h : HashCode;

// Number of coins the exchange officially issued of this
// denomination.
num_issued : Integer;

// Number of coins that were redeemed.
num_known : Integer;

// What is the total value of all coins of this denomination that
// were put into circulation (and thus the maximum Loss the

// exchange may experience due to this emergency).

risk : Amount;

// When did the exchange start issuing coins in this the denomination.
start : Timestamp;

// When does the deposit period end for coins of this denomination.
deposit_end : Timestamp;

// What is the value of an individual coin of this denomination.
value : Amount;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/emergency-by-count/$SERIAL_ID

This endpoint is used to suppress select elements of emergencies by count. Update the ‘suppressed’ field of an emergency by

count element with row ID $sSERTAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Request:

The body must be a GenericAuditorMonitorPatchRequest.
Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as nzaced.

1.6.4.4. Row Inconsistencies

This section highlights inconsistencies in a specific row of a specific table of the exchange. Row inconsistencies are reported from
different sources, and largely point to some kind of data corruption (or bug). Nothing is implied about the seriousness of the
inconsistency. Most inconsistencies are detected if some signature fails to validate. The affected table is noted in the ‘table’ field. A
description of the nature of the inconsistency is noted in ‘diagnostic’.

GET /monitoring/row-inconsistency

Get a list of row inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of RowlInconsistency objects.

Details:

interface RowInconsistency {

// Number of the affected row.
row_id : Integer;

// Name of the affected exchange table.
row_table : string;

// Human-readable diagnostic about what went wrong.
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

© Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/row-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of row inconsistencies. Update the ‘suppressed’ field of a row inconsistency

element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.5. Reserve In Inconsistencies

This section lists cases where the exchange's and auditor’s expectation of amounts transferred into a reserve differs. Basically, the
exchange database states that a certain reserve was credited for a certain amount via a wire transfer, but the auditor disagrees
about this basic fact. This may result in either a customer loosing funds (by being issued less digital cash than they should be) or

the exchange loosing funds (by issuing a customer more digital cash than they should be).

GET /monitoring/reserve-in-inconsistency

Get a list of reserve in inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: o limit - A signed integer, indicating how many elementérglative to the offset query parameter
should be returned. The default value is -20.
« offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
e return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of Reservelninconsistency objects.

Details:

interface ReservelInInconsistency {

// Unique row identifier
row_id : Integer;

// Amount the exchange expects to be in the reserve
amount_exchange_expected : Amount;

// Amount deposited into the reserve
amount_wired : Amount;

// Public key of the reserve
reserve_pub : EddsaPublicKey;

// Time of the deposit
timestamp : Timestamp;

// Account associated with the reserve
account : string;

// Human readable diagnostic of the problem
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-in-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve in inconsistencies. Update the ‘suppressed’ field of a reserve in

inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.
Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.6. Purse Not Closed Inconsistencies

This section highlights cases, in which either payer or payee did not finish their part of a P2P payment. This caused a purse —
which may contain some money — to reach its expiration date. However, the exchange failed to properly expire the purse, which

means the payer did not get their money back. The cause is usually that the taler-exchange-expire helper is not running properly.

GET /monitoring/purse-not-closed-inconsistencies

Get a list of purse not closed inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: o limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of PurseNotClosedInconsistencies objects.

Details:

interface PurseNotClosedInconsistencies {

// Unique row identifier.
row_id : Integer;

// Public key of the affected purse
purse_pub : EddsaPublicKey;

// Amount still in the purse, which should have been refunded
amount : Amount;

// When the purse expired
expiration_date : Timestamp;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/purse-not-closed-inconsistencies/$SERIAL_ID

This endpoint is used to suppress select elements of purse not closed inconsistencies. Update the ‘suppressed’ field of a purse
not closed inconsistencies element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the

auditor.
Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.7. Reserve Not Closed Inconsistencies

This section highlights cases, in which reserves were not closed, despite being expired. As a result, customers that wired funds to
the exchange and then failed to withdraw them are not getting their money back. The cause is usually that the taler-exchange-
closer process is not running properly.

GET /monitoring/reserve-not-closed-inconsistency

Get a list of reserve not closed inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit - A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
« offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of ReserveNotClosedInconsistency objects.

Details:

interface ReserveNotClosedInconsistency

-~

// Unique row identifier
row_id : Integer;

// Public key of the reserve
reserve_pub : EddsaPublicKey;

// Amount still in the reserve at the time of expiration
balance : Amount;

// Date the reserve expired
expiration_time : Timestamp;

// Human readable string describing the problem
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-not-closed-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve not closed inconsistencies. Update the ‘suppressed’ field of a
reserve not closed inconsistency element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by

the auditor.
Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.8. Reserve Balance Insufficient Inconsistencies

This section highlights cases where more coins were withdrawn from a reserve than the reserve contained funding for. This is a

serious compromise resulting in proportional financial losses to the exchange.

GET /monitoring/reserve-balance-insufficient-inconsistency

Get a list of reserve balance insufficient inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: e limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of ReserveBalancelnsufficientinconsistency objects.

Details:

interface ReserveBalanceInsufficientInconsistency {

// Unique row identifier
row_id : Integer;

// Public key of the affected reserve
reserve_pub : EddsaPublicKey;

// Whether this inconsistency is profitable for the exchange
inconsistency_gain : boolean;

// Amount possibly Lost or gained by the exchange
inconsistency_amount : Amount;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-balance-insufficient-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve balance insufficient inconsistencies. Update the 'suppressed’ field
of a reserve balance insufficient inconsistency element with row ID $SERIAL_ID, according to

GenericAuditorMonitorPatchRequest, stored by the auditor.
Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.9. Invalid Signature Losses

This section lists operations that the exchange performed, but for which the signatures provided are invalid. Hence the operations
are invalid and the amount involved could be a loss for the exchange (as the involved parties could successfully dispute the

resulting transactions).

GET /monitoring/bad-sig-losses

Get a list of invalid signature losses stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: e limit — A signed integer, indicating how many elements relative to the offset query parameter

should be returned. The default value is -20.

offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.

operation - A string. If specified, only returns eligible rows with this BadSigLosses.operation
value. The default value is NULL which means to not filter by operaiton.

use_op_spec_pub — A boolean. If true, use the value of OpSpecPub to only return eligible rows

with this BadSigLosses.operation_specific_pub value. The default value is NULL.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of BadSigLosses objects.

Details:

interface BadSiglLosses {

// Unique row identifier
row_id : Integer;

// Operation performed, even though a signature was invalid
operation : string;

// Amount considered Lost by the exchange
loss : Amount;

// Public key associated with an operation
operation_specific_pub : EddsaPublicKey;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/bad-sig-losses/$SERIAL_ID

This endpoint is used to suppress select elements of bad sig losses. Update the ‘suppressed’ field of a bad sig losses element

with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.10. Coin Inconsistencies

This section lists cases where the exchange made arithmetic errors found when looking at the transaction history of a coin. The
totals sum up the differences in amounts that matter for profit/loss calculations of the exchange. When an exchange merely
shifted money from customers to merchants (or vice versa) without any effects on its own balance, those entries are excluded from
the total.

GET /monitoring/coin-inconsistency

Get a list of coin inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
e return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of Coinlnconsistency objects.

Details:

interface CoinInconsistency {

// Unique row identifier
row_id : Integer;

// The operation performed by the exchange
operation : string;

// Total the exchange calculated
exchange_amount : Amount;

// Total the auditor calculated
auditor_amount : Amount;

// Public key of the coin in question
coin_pub : EddsaPublicKey;

// Whether this arithmetic error was profitable for the exchange
profitable : boolean;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/coin-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of coin inconsistencies. Update the ‘suppressed’ field of a coin inconsistency

element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.11. Denominations Without Signatures

This section highlights denomination keys that lack a proper signature from the taler-auditor-offline tool. This may be legitimate,
say in case where the auditor’s involvement in the exchange business is ending and a new auditor is responsible for future

denominations. So this must be read with a keen eye on the business situation.

GET /monitoring/denominations-without-sigs

Get a list of denominations without signatures stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of DenominationsWithoutSigs objects.

Details:

interface DenominationsWithoutSigs {

// Unique row identifier
row_id : Integer;

// Hash of the denomination public key
denompub_h : HashCode;

// Value of each coin of the denomination that Lacks
// the auditor's signature.

value : Amount;

// From when the denomination key in question is valid
start_time : Timestamp;

// When the denomination key in question expires
end_time : Timestamp;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/denominations-without-sigs/$SERIAL_ID

This endpoint is used to suppress select elements of denominations without sigs. Update the ‘suppressed’ field of a

denominations without signatures element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored

by the auditor.
Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.12. Misattribution In Inconsistencies

This section lists cases where the sender account record of an incoming wire transfer differs between the exchange and the bank.
This may cause funds to be sent to the wrong account should the reserve be closed with a remaining balance, as that balance

would be credited to the original account.

GET /monitoring/misattribution-in-inconsistency

Get a list of misattribution in inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of MisattributionInlnconsistency objects.

Details:

interface MisattributionInInconsistency {

// Unique row identifier in the exchange database.
row_id : Integer;

// Amount of money sent to the wrong account
amount : Amount;

// Row of the transaction in the bank database as
// returned by the bank revenue API.
bank_row : Integer;

// Public key of the affected reserve
reserve_pub : EddsaPublicKey;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/misattribution-in-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of misattribution in inconsistencies. Update the ‘suppressed’ field of an

misattribution in inconsistency element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by

the auditor.
Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.13. Deposit Confirmations

This section contains a list of deposits confirmations that an exchange provided to merchants but failed to store in its own
database. This is indicative of potential fraud by the exchange operator, as the exchange should only issue deposit confirmations
after storing the respective deposit records in its database. Not storing the deposit data means that the exchange would not pay
the merchant (pocketing the money) or allow the customer to double-spend the money (which is naturally also not good).

Note that entries could appear in this list also because the exchange database replication is delayed. Hence, entries that are only a
few seconds old might not be indicative of an actual problem. If entries in this list are more than a few seconds old, the first thing
to check is whether or not the database replication from the exchange is working properly.

GET /monitoring/deposit-confirmations

Get a list of deposit confirmations stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of DepositConfirmations objects.

Details:

interface DepositConfirmations {

// Row id in the exchange database
deposit_confirmation_serial_id : Integer;

// Hash over the contract for which this deposit is made.
h_contract_terms : HashCode;

// Hash over the policy concerning this deposit
h_policy : HashCode;

// Hash over the wiring information of the merchant.
h_wire : HashCode;

// Time when the deposit confirmation confirmation was generated.
exchange_timestamp : Timestamp;

// How much time does the merchant have to issue a refund
// request? Zero if refunds are not allowed.
refund_deadline : Timestamp;

// By what time does the exchange have to wire the funds?
wire_deadline : Timestamp;

// Amount to be deposited, excluding fee. Calculated from the
// amount with fee and the fee from the deposit request.
total_without_fee : Amount;

// Array of public keys of the deposited coins.
coin_pubs : EddsaPublickey[];

// Array of deposit signatures of the deposited coins.
// Must have the same length as coin_pubs.
coin_sigs : EddsaSignature[];

// The Merchant's public key. Allows the merchant to later refund
// the transaction or to inquire about the wire transfer identifier.
merchant_pub : EddsaPublicKey;

// Signature from the exchange of type

// TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT.

exchange_sig : EddsaSignature;

// Public signing key from the exchange matching exchange_sig.
exchange_pub : EddsaPublicKey;

// Exchange master signature over exchange_sig.
master_sig : EddsaSignature;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/deposit-confirmations/$SERIAL_ID

This endpoint is used to suppress select elements of deposit confirmations. Update the ‘suppressed’ field of an deposit

confirmations element with row ID $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.14. Denomination Key Validity Withdraw Inconsistencies

This section highlights cases, where denomination keys were used to sign coins withdrawn from a reserve before the
denomination was valid or after it was already expired for signing. This doesn't exactly imply any financial loss for anyone, it is

mostly weird and may have affected the fees the customer paid.

GET /monitoring/denomination-key-validity-withdraw-inconsistency

Get a list of denomination key validity withdraw inconsistencies stored by the auditor. The following query parameters are
optional, and can be used to customise the response:

Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of DenominationKeyValidityWithdrawInconsistency objects. If no elements

could be found, an empty array is returned

Details:

interface DenominationKeyvalidityWithdrawInconsistency {

// Unique row identifier
row_id : Integer;

// When the withdrawal took place
execution_date : Timestamp;

// Public key of the reserve affected
reserve_pub : EddsaPublicKey;

// Hash of the denomination public key involved in the withdrawal
denompub_h : HashCode;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/denomination-key-validity-withdraw-inconsistency/$SERIAL_ID
This endpoint is used to suppress select elements of denomination key validity withdraw inconsistencies. Update the
‘suppressed’ field of a denomination key validity withdraw inconsistency element with row_id $SERIAL_ID, according to
GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.15. Amount Arithmetic Inconsistencies

This endpoint is used to obtain a list of amount arithmetic inconsistencies.

This section lists cases where the arithmetic of the exchange involving amounts disagrees with the arithmetic of the auditor.
Disagreements imply that either the exchange made a loss (sending out too much money), or screwed a customer (and thus at
least needs to fix the financial damage done to the customer). The profitable column is set to true if the arithmetic problem was

be determined to be profitable for the exchange, false if the problem resulted in a net loss for the exchange.

GET /monitoring/amount-arithmetic-inconsistency

Get a list of amount arithmetic inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.

Response:

200 OK:

The auditor responds with a top level array of AmountArithmeticlnconsistency objects. If no elements could be found, an

empty array is returned

Details:

interface AmountArithmeticInconsistency {

// Unique row identifier
row_id : Integer;

// Name of the arithmetic operation performed
operation : string;

// Amount according to the exchange
exchange_amount : Amount;

// Amount according to the auditor
auditor_amount : Amount;

// Whether the miscalculation is profitable for the exchange
profitable : boolean;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/amount-arithmetic-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of amount arithmetic inconsistencies. Update the ‘suppressed’ field of an

amount arithmetic inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored

by the auditor.
Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.16. Wire Format Inconsistencies

This section highlights cases where the wire transfer subject was used more than once and is thus not unique. This indicates a
problem with the bank’s implementation of the revenue API, as the bank is supposed to warrant uniqueness of wire transfer

subjects exposed via the revenue API (and bounce non-unique transfers).

GET /monitoring/wire-format-inconsistency

Get a list of wire format inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit - A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
e return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of WireFormatinconsistency objects. If no elements could be found, an empty

array is returned

Details:

interface WireFormatInconsistency {

// Unique row identifier
row_id : Integer;

// Amount that was part of the wire
amount : Amount;

// Offset of the duplicate wire transfer subject
// in the bank database according to the revenue API.

wire_offset : Integer;

// True if this diagnostic was suppressed.
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/wire-format-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of wire format inconsistencies. Update the ‘suppressed’ field of a wire
format inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the

auditor.
Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.17. Refreshes Hanging

This section highlights cases, where a coin was melted but the reveal process was not finished by the wallet. Usually, a wallet will
do both requests in rapid succession to refresh a coin. This might happen, even if the exchange is operating correctly, if a wallet
goes offline after melting. However, after some time wallets should in most cases come back online and finish the operation. If
many operations are hanging, this might be indicative of a bug (exchange failing on reveal, or wallets not implementing refresh
correctly).

GET /monitoring/refreshes-hanging

Get a list of refreshes hanging stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
» offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible

rows that are not suppressed. The default value is false.
With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of RefreshesHanging objects. If no elements could be found, an empty array is
returned

Details:

interface RefreshesHanging {

// Unique row identifier
row_id : Integer;

// Amount in coin not found in the exchange
amount : Amount;

// Public key of coin
coin_pub : EddsaPublicKey;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/refreshes-hanging/$SERIAL_ID

This endpoint is used to suppress select elements of refreshes hanging. Update the ‘suppressed’ field of a refreshes hanging
element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.18. Closure Lags

This endpoint is used to obtain a list of closure lags.

A closure lag happens if a reserve should have closed a reserve and wired (remaining) funds back to the originating account, but
did not do so on time. Significant lag may be indicative of fraud, while moderate lag is indicative that the systems may be too slow

to handle the load. Small amounts of lag can occur in normal operation.
If closure lag is experienced, the administrator should check that the taler-exchange-closer component is operating correctly.

GET /monitoring/closure-lags

Get a list of closure lags stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit - A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
e return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of ClosureLags objects. If no elements could be found, an empty array is

returned

Details:

interface ClosurelLags {

// Unique row identifier
row_id : Integer;

// Amount of money lLeft in the reserve
amount : Amount;

// When should the reserve have been closed
deadline : Timestamp;

// The wire transfer identifier
wtid : HashCode;

// payto URI (RFC 8905) of the account that
// should have been credited.

account : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/closure-lags/$SERIAL_ID

This endpoint is used to suppress select elements of closure lags. Update the ‘suppressed’ field of a closure lags element with
row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.19. Wire Out Inconsistencies

This section highlights cases where the exchange wired a different amount to a destimation account than the auditor expected.

GET /monitoring/wire-out-inconsistency

Get a list of wire out inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: ¢ limit - A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of WireOutinconsistency objects. If no elements could be found, an empty
array is returned

Details:

interface WireOutInconsistency {

// Unique row identifier
row_id : Integer;

// Account money was wired to
destination_account : string;

// How much was suppossed to be wired according to the auditor.
expected : Amount;

// The amount the exchange claims to have wired.
claimed : Amount;

// True 1if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/wire-out-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of wire out inconsistencies. Update the ‘suppressed’ field of a wire out

inconsistency element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.20. Reserve Balance Summary Wrong_Inconsistencies

This section highlights cases, where the exchange’s and auditors’ expectation of the amount of money left in a reserve differs.

GET /monitoring/reserve-balance-summary-wrong-inconsistency

Get a list of reserve balance summary wrong inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:

Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of ReserveBalanceSummaryWronglnconsistency objects. If no elements could
be found, an empty array is returned

Details:

interface ReserveBalanceSummaryWrongInconsistency {

// Unique row identifier
row_id : Integer;

// Public key of the reserve affected
reserve_pub : EddsaPublicKey;

// Amount of summary the exchange calculated
exchange_amount : Amount;

// Amount of summary the auditor calculated
auditor_amount : Amount;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/reserve-balance-summary-wrong-inconsistency/$SERIAL_ID

This endpoint is used to suppress select elements of reserve balance summary wrong inconsistencies. Update the 'suppressed’
field of a reserve balance summary wrong inconsistency element with row_id $SERIAL ID, according to
GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:

204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.4.21. Row Minor Inconsistencies

The section highlights inconsistencies where a row in an exchange table has a value that is does not satisfy expectations (such as a

malformed signature). These are cause for concern, but not necessarily point to a monetary loss (yet).

GET /monitoring/row-minor-inconsistencies

Get a list of row minor inconsistencies stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: o limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
« return_suppressed — A boolean. If true, returns all eligible rows, otherwise only returns eligible
rows that are not suppressed. The default value is false.

With the default settings, the endpoint returns at most the 20 latest elements that are not suppressed.
Response:

200 OK:

The auditor responds with a top level array of RowMinorInconsistencies objects. If no elements could be found, an empty

array is returned

Details:

interface RowMinorInconsistencies {

// Number of the row in the affected table
row_id : Integer;

// The row number 1in the affected table
row_table : Integer;

// Human readable string describing the problem
diagnostic : string;

// True if this diagnostic was suppressed.
suppressed : boolean;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

PATCH /monitoring/row-minor-inconsistencies/$SERIAL_ID

This endpoint is used to suppress select elements of row minor inconsistencies. Update the ‘suppressed’ field of a row minor
inconsistencies element with row_id $SERIAL_ID, according to GenericAuditorMonitorPatchRequest, stored by the auditor.

Response:
204 No Content:

The element has been updated.

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5. Monitoring_Auditor Status

The following entries specify how to access information the auditor keeps to properly perform audits. These tables do not contain
inconsistencies, instead they store information about balances, reserves, purses etc. Values in these tables should not differ from

their respective exchanges’ version.

1.6.5.1. Balances

Returns the various balances the auditor tracks for the exchange, such as coins in circulation, fees earned, losses experienced, etc.

GET /monitoring/balances

Get a list of balances stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.
 balance_key - a string identifying a balance. If specified, only returns elements with this exact
key. The default value is NULL.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:

The auditor responds with a top level array of Balances objects. If no elements could be found, an empty array is returned

Details:

interface Balances {

// Unique row identifier
row_id : Integer;

// String identifying a balance
balance_key : string;

// Amount of the balance
balance_value : Amount;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.2. Historic Denomination Revenue

This endpoint is used to obtain a list of historic denomination revenue, that is the profits and losses an exchange has made from
coins of a particular denomination where the denomination is past its (deposit) expiration and thus all values are final.

GET /monitoring/historic-denomination-revenue

Get a list of historic denomination revenue stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:

The auditor responds with a top level array of HistoricDenominationRevenue objects. If no elements could be found, an

empty array is returned

Details:

interface HistoricDenominationRevenue {

// Unique row identifier
row_id : Integer;

// Hash code of the denomination public key involved
denom_pub_hash : HashCode;

// Time when the denomination expired and thus the revenue
// was computed.
revenue_timestamp : Timestamp;

// Total fee revenue the exchange earned from coins of this
// denomination.
revenue_balance : Amount;

// Total losses the exchange experienced from this denomination
// (this basically only happens if someone was able to forge
// denomination signatures). So non-zero values are indicative

// of a serious problem.
loss_balance : Amount;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.3. Denomination Pending

This endpoint is used to obtain a list of balances for denominations that are still active, that is coins may still be deposited (or

possibly even withdrawn) and thus the amounts given are not final.

GET /monitoring/denomination-pending

Get a list of denomination pending stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
« offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:
The auditor responds with a top level array of DenominationPending objects. If no elements could be found, an empty

array is returned

Details:

interface DenominationPending {

// Unique row identifier
row_id : Integer;

// Hash of the denomination public key
denom_pub_hash : HashCode;

// Total value of coins remaining in circulation (excluding
// the value of coins that were recouped, those are always
// just under recoup_Lloss).

denom_balance : Amount;

// Total value of coins redeemed that exceeds the amount we

// put into circulation. Basically, this value grows if we

// wanted to reduce denom_balance (because a coin was deposited)
// but we could not because the denom_balance was already zero.
denom_loss : Amount;

// Total number of coins of this denomination that were
// put into circulation.

num_issued : Integer;

// Total value of the coins put into circulation.
denom_risk : Amount;

// Losses the exchange had from this denomination due to coins

// that were recouped (after the denomination was revoked).
recoup_loss : Amount;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.4. Historic Reserve Summary

This section summarizes historic profits an exchange made from reserves and associated reserve-specific fees.

GET /monitoring/historic-reserve-summary

Get a list of historic reserve summary stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: ¢ limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
e offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:

The auditor responds with a top level array of HistoricReserveSummary objects. If no elements could be found, an empty

array is returned

Details:

interface HistoricReserveSummary {

// Unique row identifier
row_id : Integer;

// From when the summary starts
start_date : Timestamp;

// When the summary ends
end_date : Timestamp;

// Profits the exchange charged for the reserve
reserve_profits : Amount;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.5. Reserves

This endpoint is used to obtain a list of open reserves that the auditor is currently tracking balances for.

GET /monitoring/reserves

Get a list of reserves stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: o limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:

The auditor responds with a top level array of Reserves objects. If no elements could be found, an empty array is returned

Details:

interface Reserves {

// Unique row identifier
auditor_reserves_rowid : Integer;

// Public key of the reserve
reserve_pub : EddsaPublicKey;

// Amount 1in the balance

reserve_balance : Amount;

// Reserve losses are incurred if (a) a reserve is

// incorrectly credited from a recoup for a non-revoked
// coin, or (b) if the exchange allowed more digital cash
// to be withdrawn from a reserve than the balance of the
// reserve should have permitted. FIXME: We may want to
// distinguish these two cases in the future.
reserve_loss : Amount;

// Amount earned by charging withdraw fees
withdraw_fee_balance : Amount;

// Amount earned by charging a closing fee on the reserve
close_fee_balance : Amount;

// Total purse fees earned from this reserve
purse_fee_balance : Amount;

// Total reserve open fees earned from the reserve
open_fee_balance : Amount;

// Total reserve history fees earned from this reserve
history_fee_balance : Amount;

// When the purse expires
expiration_date : Timestamp;

// Who created the account
origin_account : string;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.6. Purses

This endpoint is used to obtain information about open purses.

GET /monitoring/purses

Get a list of purses stored by the auditor.
The following query parameters are optional, and can be used to customise the response:
Request:

Query Parameters: « limit — A signed integer, indicating how many elements relative to the offset query parameter
should be returned. The default value is -20.
 offset — An unsigned integer, indicating from which row onward to return elements. The default
value is INT_MAX.

With the default settings, the endpoint returns at most the 20 latest elements.
Response:

200 OK:

The auditor responds with a top level array of Purses objects. If no elements could be found, an empty array is returned

Details:

interface Purses {

// Unique row identifier
auditor_purses_rowid : Integer;

// Public key of the purse
purse_pub : EddsaPublicKey;

// Amount currently stored in the purse
balance : Amount;

// Amount the purse 1is intended for / the maximum amount that can be in the purse
target : Amount;

// When the purse expires
expiration_date : Timestamp;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.5.7. Progress

This section contains information about the auditing progress an auditor has made.

GET /monitoring/progress

Get the progress stored by the auditor.
Response:

200 OK:

The auditor responds with a top level array of Progress objects. If no elements could be found, an empty array is returned
Details:

interface Progress {

// Key associated with a given progress point
progress_key : String;

// How much of the exchanges data has been processed so far
progress_offset : Integer;

O Note

This endpoint is still experimental. The endpoint will be further developed as needed.

1.6.6. Complaints

This endpoint is used by the wallet or merchants to submit proof of misbehavior of an exchange to the auditor.

O Note

To be designed and implemented.

PUT /complain

Complain about misbehavior to the auditor.

Previous Next
1.5. Wallet-Core APl Documentation 1.7. Backup and Synchronization RESTful API

© Copyright 2014-2024 Taler Systems SA (GPLv3+ or GFDL 1.3+).

A. Appendices

A.3. Python Scripts

import os
import re

min

dem =

0N ONUT B WN

AU U UTulg L A DBEDRNDEDRNDERNDEWWWWWWWWWWWRNNNNNNNNRNON R = e e
OO0 O AUT L, WNREFRFOVOVONANURLA, WNRFRFOOVUXNANURL, WNREFROWVUONAURLA WNREREOWOVONANULRA WNRFR OV

. _deposit—confirmation:

Deposit Confirmations

Merchants should probabilistically submit some of the deposit
confirmations they receive from the exchange to auditors to ensure
that the exchange does not lie about recording deposit confirmations
with the exchange. Participating in this scheme ensures that in case
an exchange runs into financial trouble to pay its obligations, the
merchants that did participate in detecting the bad behavior can be
paid out first.

http :put:: /deposit—confirmation

Submits a ‘DepositConfirmation‘ to the exchange. Should succeed
unless the signature provided is invalid or the exchange is not
audited by this auditor.

**Response: **

:http : statuscode: ‘200 Ok*:
The auditor responds with a ‘DepositAudited’ object.
This request should virtually always be successful.
:http : statuscode: ‘403 Forbidden *:
The signature on the deposit confirmation is invalid.
:http : statuscode: ‘410 Gone":
The public key used to sign the deposit confirmation
was revoked.

Details:
ts:def:: DepositAudited
interface DepositAudited {

// TODO: maybe change to ‘204 No content‘‘ instead?
}

ts:def:: DepositConfirmation
interface DepositConfirmation {

// Hash over the contract for which this deposit is made.
h_contract_terms: HashCode;

// Hash over the extensions.
h_extensions: HashCode;

// Hash over the wiring information of the merchant.
h_wire: HashCode;

// Time when the deposit confirmation confirmation was generated.
timestamp: Timestamp;

// How much time does the merchant have to issue a refund

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

A. Appendices

// request? Zero if refunds are not allowed.
refund_deadline: Timestamp;

// By what time does the exchange have to wire the funds?
wire_deadline: Timestamp;

// Amount to be deposited, excluding fee. Calculated from the
// amount with fee and the fee from the deposit request.
amount_without_fee: Amount;

// Array of public keys of the deposited coins.
coin_pubs: EddsaPublicKey[];

// Array of deposit signatures of the deposited coins.
// Must have the same length as ‘‘coin_pubs ‘.
coin_sigs: EddsaSignature[];

// The Merchant’s public key. Allows the merchant to later refund
// the transaction or to inquire about the wire transfer identifier.
merchant_pub: EddsaPublicKey;

// Signature from the exchange of type
// * ‘TALER_SIGNATURE_EXCHANGE_CONFIRM_DEPOSIT* .
exchange_sig: EddsaSignature;

// Public signing key from the exchange matching °‘exchange_sig " ".
exchange_pub: EddsaPublicKey;

// Master public key of the exchange corresponding to ‘‘master_sig"‘".
// ldentifies the exchange this is about.

// @deprecated since vi (now ignored, global per auditor)
master_pub: EddsaPublicKey;

// When does the validity of the exchange_pub end?
ep_start: Timestamp;

// When will the exchange stop using the signing key?
ep_expire: Timestamp;

// When does the validity of the exchange_pub end?
ep_end: Timestamp;

// Exchange master signature over ‘‘exchange_sig" ‘.
master_sig: EddsaSignature;
note::
This APl is still experimental (and is not yet implemented at the

time of this writing). A key open question is whether the auditor
should sign the response information.

dcm_del = """
This API is used by the auditor to delete an audited deposit confirmation.
http:delete:: /deposit—confirmation/SSERIAL_ID

Delete deposit confirmation entry with given serial_id.

A. Appendices

123 **Response: **

124

125 :http:statuscode:'204 No content ‘:

126 The deposit confirmation was deleted.
127

128 :http : statuscode: ‘401 Unauthorized ‘:
129 Unauthorized request.

130

131 :http : statuscode:'404 Not found *:

132 The deposit confirmation was unknown.
133

134 .. nhote::

135

136 This APl is still experimental (and is not yet implemented at the
137 time of this writing).

138 mmnn

139

140 |spa_api = £"""

141 | .. _spa—api:

142

143

144 | Single Page Application API

145

146

147 |The following entries specify how to access the results of an audit.
148
149 | For most endpoints, rows may be marked as ’'suppressed’, to not send them again upon
subsequent GET requests.

150 |To do this, a :ts:type: ‘GenericUpdate‘ object may be used.

151
152 [**Details:**
153
154 .. ts:def:: GenericUpdate
155
156 interface GenericUpdate {{
157
158 // the row_id of a respective table that should be changed
159 row_id : Integer;

160
161 suppressed : boolean;
162
163 // unused

164 ancient? : boolean;
165
166 1
167
168 mmn
169
170 |en = {
171
172 "u_int64" : "Integer",

173 "taler_amount" : "Amount",
174 "boolean" : "boolean",

175 "text" : "string"

176
177 |}
178
179
180 |descriptions = {

181 "fee-time-inconsistency"
182
183 unu’

mwn

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

A. Appendices

"amount-arithmetic-inconsistency" winn
i
s
"closure-logs" e
win
s

"bad-sig-losses" R

This table tracks the amount of money lost because of bad signatures.

mwn
>

}

def repl(tp):

if tp not in en:
return "TODO"
else:

return en[tp]

def guessBYTEA(prop) :
prop is the properties name, like "denompub_h"

if prop == "row_id":
return "Integer"

if prop.endswith("_h") or prop.endswith("_hash") or prop.startswith("h_"):
return "HashCode"

if "time" in prop or "ends" in prop or "start" in prop or "_date" in prop or "_end" in
prop or "deadline" in prop or "expire" in prop or prop.endswith("_from"):

return "Timestamp"

if "_pub" in prop:
return "EddsaPublicKey"

if "_sig" in prop:
return "EddsaSignature"

if "diagnostic" in prop or "operation" in prop:
return "string"

if prop == "destination_account" or prop == "account" or prop == "type'":
return "string"

if "num_" in prop or "offset" in prop or "row" in prop or prop.endswith("_id"):
return "Integer"

if "wtid" == prop:
return "Integer"

return "TODO"

def doc_upd(a):
w = al0]

sc = a[2]
ssc = a[3]

245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

291

292
293
294

295
296
297
298
299
300
301

A. Appendices

kc = a[4]
cc = al[5b]
s = a[6]

s_plur = a[7]
template = £"""

This API is used to suppress select elements of {s_plur}
http :patch:: /{kc}

Update the ’'suppressed’ field of an {s} element according to :ts:type:‘GenericUpdate ",
stored by the auditor.

**Response: **

:http : statuscode: ‘202 Accepted ‘:
The element has been accepted for processing.

note ::

This APl is still experimental. The APl will be further developed as needed.

nwin

return template

def doc_get(a):

w = al0]
sc = a[2]
ssc = a[3]
kc = al[4]
cc = al[5b]
s = a[6]

s_plur = a[7]
s_plur_caps = al[8]

addendum = ""
if kc == "bad-sig-losses":
addendum = """:query operation: A string. If specified, only returns eligible rows

with this :ts:type: ‘BadSiglLosses ‘. operation value. The default value is NULL.
:query use_op_spec_pub: A boolean. If true, use the value of :ts:type: ‘OpSpecPub‘ to
only return eligible rows with this :ts:type: ‘BadSiglLosses ‘. operation_specific_pub
value. The default value is NULL.
if kc == "balances":
addendum = """:query balance_key: a string identifying a balance. If specified,
only returns elements with this exact key. The default value is NULL.

nwin

s_len = len(f"{s_plur_caps}")
cov = "-" x s_len

tbl_con = ""

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323

324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

A. Appendices

for x in w:
tbl_con += "\n\t" + x + ":)" + wlx] + ";\n"

template = £"""
{kc}—Llist:

{s_plur_caps}
{cov}

This API is used to obtain a list of {s_plur}

http:get:: /{kc}

Get a list of {s_plur} stored by the auditor.

The following query parameters are optional, and can be used to customise the response:

**Request: **

:query limit: A signed integer, indicating how many elements relative to the offset
query parameter should be returned. The default value is —2o.

:query offset: An unsigned integer, indicating from which row onward to return
elements. The default value is INT_MAX.

rquery return_suppressed: A boolean. If true, returns all eligible rows, otherwise only
returns eligible rows that are not suppressed. The default value is false.

{addendum}

The default values, thus, return at max the 20 latest elements that are not suppressed.

**Response: **

:http : statuscode:'200 OK*:
The auditor responds with a top level array of :ts:type:‘{cc}‘ objecs.

:http : statuscode: ‘403 Forbidden *:
No or bad Bearer token provided.

:http : statuscode:'404 Not Found ‘:
No elements could be found.

Details:
ts:def:: {cc}
interface {cc} {{

{ tbl_con }
B
note::

This APl is still experimental. The APl will be further developed as needed.

nwin

return template

def main():

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

A. Appendices

f = open("doc.txt","w+")
f.write(dcm)

f.write(spa_api)

amalgamation = list()
directory = os.fsencode("sql")

for file in os.listdir(directory):

words = {}

os.fsdecode(file)
os.fsdecode(directory)

name
path

if name.find("DS_Store") != -1:
continue

nm = name.removesuffix(".sql")

comp = list(filter(lambda x: x != "0002-auditor",nm.split(’_’)))

sql = open(path + ’/’ + name, ’r’, encoding=’utf-8’, errors=’ignore’)

lines = sql.readlines()

i=0
for line in lines:
#find point of interest
if (line.find("CREATE_TABLE") < 0):
i+=1
continue
else:
i+=1
skips one, but that is ok
exit = 0
for x in range(i,len(lines) - 1):
sql = lines[x]

if (sql.find(");") >= 0):
exit = 1

if (exit == 0):
sql = re.sub(xr’[~\w\s]’, ’’, sql)

if (sql != ’\n’):

dingdong = sql.split(’’)

bloop = list(filter(lambda x: x != ’’,dingdong))

#print (bloop)
subst = repl(bloop[1].strip().lower())

if subst == "TODO":

A. Appendices

423 subst = guessBYTEA(bloop[0].strip().lower())
424
425 words [bloop[0] .strip() .lower()] = subst
426 else:
427 words [bloop[0] .strip() .lower()] = subst
428
429
430 sc = "_".join(comp)
431 ssc = "_".join(map(str.upper,comp))
432 kc = "-".join(comp)
433 cc = "".join(map(str.capitalize,comp))
434 s = ",".join(comp)
435
436 for i, n in enumerate(comp) :
437 if comp[i] == "inconsistency":
438 comp[i] = "inconsistencies"
439 if comp[i] == "emergency":
440 comp[i] = "emergencies"
441
442 s_plur = ",".join(comp)
443 s_plur_caps = ",".join(map(str.capitalize,comp))
444
445 tpl = (words, comp, sc, ssc, kc, cc, s, s_plur, s_plur_caps)
446
447 amalgamation.append (tpl)
448 f.write(doc_get (tpl))
449
450 f.write(doc_upd(tpl))
451
452 if (kc == "deposit-confirmations"):
453 f.write(dcm_del)
454
455 f.close()
456
457
458
459
460
461
462
463
464
465
466
467 |if __name__ == "__main__":
468 main()
1 |aggregation = ["coin_history",
2 "coin_deposits",
3 "refresh_commitments",
4 "purse_deposits",
5 "purse_decision",
6 "refunds",
7 "recoup_refresh",
8 "recoup",
9 "reserves_open_deposits",
10 "known_coins",
11
12 "batch_deposits",
13 "wire_targets",
14 "partners",
15 "purse_requests",

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

A. Appendices

"purse_decision",
"purse_deposits",
"coin_deposits",
"refresh_revealed_coins",
"reserves_out",
"reserves",
"refresh_commitments",
"recoup",
"recoup_refresh",
"coin_history",
"refunds",
"reserves_open_deposits",
"known_coins",

"aggregation_tracking",

"batch_deposits",
"coin_deposits",
"wire_targets",
"known_coins",

"wire_out",
"wire_out",
"wire_targets"

]

coins = [
"denomination_revocations",

"known_coins",

"refresh_commitments",
"refresh_revealed_coins",

"purse_deposits",
"known_coins",

"auditor_denom_sigs",
"auditors",

"reserves_out",
"reserves",

"refunds",
"batch_deposits",
"coin_deposits",
"known_coins",

"purse_decision",
"purse_requests",
"purse_merges",
"recoup_refresh",
"refresh_revealed_coins",
"refresh_commitments",
"known_coins",

"recoup",
"known_coins",
"reserves_out",
"reserves",

"refresh_commitments",

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

A. Appendices

"known_coins",

"coin_deposits",
"batch_deposits",
"wire_targets",
"known_coins",

"purse_deposits",
"partners",
"purse_merges",
"purse_requests",
"known_coins",

]

deposits = [
"coin_deposits",
"batch_deposits",
"known_coins",

"wire_targets"

]

auditor_purses has been deliberately removed

purses = [
"global_fee",
"purse_requests",
"purse_deposits",
"partners",
"purse_merges",
"purse_requests",
"known_coins",

"account_merges",
"purse_requests",
"purse_merges",
"purse_decision",
"purse_merges",
"purse_requests",
"partners"

]

reserves = [

"denomination_revocations",

"wire_fee",
"reserves_in",
"reserves",
"wire_targets",
"reserves_out",
"reserves",

"recoup",
"known_coins",
"reserves_out",
"reserves",

"reserves_open_requests",
"reserves_close",
"wire_targets",

A. Appendices

140 |"reserves",

141 |"purse_decision",
142 | "purse_requests",
143 |"purse_merges",
144 | "purse_requests",
145 |"purse_merges"
146 |1
147
148 |wire = [

149 |"aggregation_tracking",
150 |"profit_drains",

151 |"wire_out",
152 |"wire_targets",
153 |"reserves_in",

154 |"reserves",

155 |"wire_targets",
156 |"reserves_close",
157 |"wire_targets",
158 |"reserves"

159
160
161 |1
162
163
164 |def main():

165 c=0

166 for 1 in [(aggregation, "auditor_wake_aggregation_helper_trigger"), (coins,
"auditor_wake_coins_helper_trigger"), (purses,
"auditor_wake_purses_helper_trigger"), (deposits,
"auditor_wake_deposits_helper_trigger"), (reserves,
"auditor_wake_reserves_helper_trigger"),
(wire,"auditor_wake_wire_helper_trigger")]:

167
168 compr = list(set(1[0]))
169 i=0
170
171 for tbl in compr:
172 str = £"""
173 |CREATE OR REPLACE TRIGGER auditor_exchange_notify_helper_{l[1].split("_")[2]}{i}
174 AFTER INSERT ON exchange.{tbl}
175 EXECUTE FUNCTION {L[2]}();
176 .
177
178 print(str)
179
180 i=1i+1
181
182 c=c+1
183
184
185
186
187 |if __name__ == "__main__":
188 main()
1 |import time
2 |import os
3 |import re
4
5 |license = """
6 |[/*
7 This file is part of TALER

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

A. Appendices

Copyright (C) 2024 Taler Systems SA

TALER is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3, or (at your option) any later version.

TALER is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
TALER; see the file COPYING. |[f not, see <http://mwww.gnu.org/licenses/>

*

/

mwnn

pack_json = {

"bigint" : "GNUNET_JSON_pack_int64",
"integer" : "GNUNET_JSON_pack_int64",
"int8" : "GNUNET_JSON_pack_int32",

"bytea" : "GNUNET_JSON_pack_data_auto",
"taler_amount" : "TALER_JSON_pack_amount",
"boolean" : "GNUNET_JSON_pack_bool",
"varchar" : "GNUNET_JSON_pack_string",
"text" : "GNUNET_JSON_pack_string"

}

def pkjs(param, t):
pr = pack_json[t]
match t:
case "taler_amount":
return pr + f£"(\"{param}\", &dc->{param})"

return pr + £"(\"{param}\",_ dc->{param})"

#this amount needs three arguments
spec_json = {

"bigint" : "GNUNET_JSON_spec_int64",
"integer" : "GNUNET_JSON_spec_int64",
"int8" : "GNUNET_JSON_spec_int32",

"bytea" : "GNUNET_JSON_spec_fixed_auto",
"taler_amount" : "TALER_JSON_spec_amount",
"boolean" : "GNUNET_JSON_spec_bool",
"varchar" : "GNUNET_JSON_spec_string",
"text" : "GNUNET_JSON_spec_string"

}
def spjs(param, t):
pr = spec_json[t]
match t:
case "taler_amount":
return pr + £"(\"{param}\", TAH_currency, &dc.{param})"
case "varchar":

return pr + £"(\"{param}\", (const char **) &dc.{param})"

return pr + £"(\"{param}\", &dc.{param})"

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

A. Appendices

spec_pq = {
"bigint" : "GNUNET_PQ_result_spec_int64",
"integer" : "GNUNET_PQ_result_spec_int64",
"int8" : "GNUNET_PQ_result_spec_int32",
"bytea" : "GNUNET_PQ_result_spec_auto_from_type",
"taler_amount" : "TALER_PQ_RESULT_SPEC_AMOUNT",
"boolean" : "GNUNET_PQ_result_spec_bool",
"varchar" : "GNUNET_PQ_result_spec_string",
"text" : "GNUNET_PQ_result_spec_string"

}

def sppq(param, t):
pr = spec_pqlt]

return pr + £"(\"{param}\", &dc.{param})"

query_pq = {
"bigint" : "GNUNET_PQ_query_param_int64",
"integer" : "GNUNET_PQ_query_param_int64",
"int8" : "GNUNET_PQ_query_param_int32",
"bytea" : "GNUNET_PQ_query_param_auto_from_type",
"taler_amount" : "TALER_PQ_query_param_amount",
"boolean" : "GNUNET_PQ_query_param_bool",
"varchar" : "GNUNET_PQ_query_param_string",
"text" : "GNUNET_PQ_query_param_string"

}

def qupq(param, t):

pr = query_pqlt]

match t:
case "string":
return pr + f"(dc->{param})"
case "boolean":
return pr + f"(dc->{param})"
case "taler_amount":
return pr + f£"(pg->conn, &dc->{param})"
case "bytea":
return pr + f"(&dc->{param})"

return pr + f"(&dc->{param})"

c_types = {
"bigint" : "int64_t",
"integer" : "int64_t",
"int8" : "int32_t",
"bytea" : "TYPE",
"taler_amount" : "struct TALER_Amount",
"boolean" : "bool",
"varchar" : "char x",
"text" : "char *"

A. Appendices

132
133
134
135
136
137 |def taler_auditor_httpd_xyz_put_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

138

139 ret = £"""
140 {license}
141

142

143 |#include "platform.h"

144 |#include <gnunet/gnunet_util_Llib.h>

145 |#include <gnunet/gnunet_json_lib.h>

146 |#include <jansson.h>

147 |#include <microhttpd.h>

148 |#include <pthread.h>

149 |#include "taler_json_Llib.h"

150 |#include "taler_mhd_lib.h"

151 |#include "taler—auditor—httpd.h"

152 |#include "taler—auditor—httpd_{kebab_case}—put.h"
153
154 | /**

155 | * We have parsed the JSON information about the {kebab_case}, do some
156 | * basic sanity checks and then execute the

157 |* transaction.

158 |*

159 | * @param connection the MHD connection to handle

160 | * @param dc information about the {kebab_case}

161 |* @return MD result code

162 | */

163 |static MHD_RESULT

164 |process_inconsistency (

165 struct MHD_Connection *connection,

166 const struct TALER AUDITORDB_{camelCase} *dc)

167 |{{f

168

169 enum GNUNET_DB_QueryStatus gs;

170

171 if (GNUNET_SYSERR ==

172 TAH_plugin—preflight (TAH_plugin—cls))

173 {

174 GNUNET _break (o) ;

175 return TALER_MHD_reply_with_error (connection,

176 MHD_HTTP_INTERNAL_SERVER_ERROR,
177 TALER_EC_GENERIC_DB_SETUP_FAILED,
178 NULL) ;

179 1

180

181 /* execute transaction */

182 gs = TAH_plugin—insert_{snake_case} (TAH_plugin—cls,

183 dc);

184 if (o > gs)

185 {{

186 GNUNET _break (GNUNET_DB_STATUS HARD_ERROR == gs) ;

187 TALER LOG_WARNING (

188 "Failed to store /{kebab_case} in database\n");

189 return TALER_MHD_reply_with_error (connection,

190 MHD_HTTP_INTERNAL_SERVER_ERROR,
191 TALER_EC_GENERIC_DB_STORE_FAILED,

192 "{kebab_case}") ;

A. Appendices

193 1

194 return TALER_MHD_REPLY JSON_PACK (connection,

195 MHD_HTTP_OK,

196 GNUNET_JSON_pack_string ("status", "{screaming_snake_case}_OK"));
197 |}}

198
199
200 |MHD_RESULT

201 |TAH_{screaming_snake_case}_handler_put (
202 struct TAH_RequestHandler *rh,

203 struct MHD_Connection *connection,
204 void **connection_cls,

205 const char *upload_data,

206 size_t *upload_data_size,

207 const char *const args([])

208 |{{

209

210 struct TALER_AUDITORDB_{camelCase} dc;
211

212

213 struct GNUNET_JSON_Specification spec[] = {{
214

215 {pl}

216

217 GNUNET_JSON_spec_end ()

218 IS

219

220

221 json_t *json;

222

223 (void) rh;

224 (void) connection_cls;

225 (void) upload_data;
226 (void) upload_data_size;

227 {

228 enum GNUNET_GenericReturnValue res;

229

230 res = TALER_MHD_parse_post_json (connection,

231 connection_cls,
232 upload_data,

233 upload_data_size,
234 &json) ;

235 if (GNUNET_SYSERR == res)

236 return MHDNO;

237 if ((GNUNETNO == res) ||

238 (NULL == json))

239 return MHD_YES;

240 res = TALER_MHD_parse_json_data (connection,

241 json,

242 spec) ;

243 if (GNUNET_SYSERR == res)

244 {{

245 json_decref (json);

246 return MHDNO; /* hard failure */
247 1}

248 if (GNUNETNO == res)

249 i

250 json_decref (json);

251 return MHD_YES; /* failure */
252 1}

253 }H

254

A. Appendices

255 MHD_RESULT res;
256
257 res = process_inconsistency (connection, &dc);
258 GNUNET_JSON_parse_free (spec) ;

259
260 json_decref (json);
261 return res;

262
263 | }}
264
265
266 |void

267 |TEAH_{screaming_snake_case}_PUT_init (void)
268 | {{

269
270 |}}
271
272
273 | void

274 |TEAH_{screaming_snake_case}_PUT_done (void)
275 |{{

276
277 | }}
278
279 nmn
280
281 return ret
282
283 |def taler_auditor_httpd_xyz_put_h_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

284

285 ret = £"""
286

287 {license}
288

289 |#ifndef SRC_TALER AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
290 |#define SRC_TALER AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
291
292 |#include <microhttpd.h>

293 |#include "taler—auditor—httpd.h"

294

295 | /**

296 |* Initialize subsystem.

297 | */

298 |void

299 |TEAH_BAD_{screaming_snake_case}_init (void);
300

301 |/**

302 |* Shut down subsystem.

303 | */

304 |void

305 |TEAH_BAD_{screaming_snake_case}_done (void);
306

307

308 |/**

309 |* Handle a "/{kebab_case}" request. Parses the JSON, and, if

310 |* successful, checks the signatures and stores the result in the DB.

311 | *

312 |* @param rh context of the handler

313 |* @param connection the M-D connection to handle

314 | * @param[in,out] connection_cls the connection’s closure (can be updated)
315 |* @param upload_data upload data

A. Appendices

316 |* @param[in,out] upload_data_size number of bytes (left) in @a upload_data
317 |* @return M-D result code

318 | */

319 |MHD_RESULT

320 |TAH_{screaming_snake_case}_PUT_handler (struct TAH_RequestHandler *rh,

321 struct MHD_Connection *
322 connection,

323 void **connection_cls,
324 const char *upload_data,
325 size_t *upload_data_size,
326 const char *const args([]);
327

328

329 |#endif // SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_PUT_H
330
331 nmn
332
333
334 return ret
335
336 | def taler_auditor_httpd_xyz_get_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

337
338 ret = £"""
339
340 {license}
341
342
343 |#include "platform.h"

344 |#include <gnunet/gnunet_util_Llib.h>

345 |#include <gnunet/gnunet_json_lib.h>

346 |#include <jansson.h>

347 |#include <microhttpd.h>

348 |#include <pthread.h>

349 |#include "taler_json_Llib.h"

350 |#include "taler_mhd_Llib.h"

351 |#include "taler—auditor—httpd.h"

352 |#include "taler—auditor—httpd_{kebab_case}—get.h"

353

354 | /**

355 | * Add {kebab_case} to the list.
356 | *

357 |* @param[in,out] cls a ‘json_t *‘ array to extend

358 |* @param serial_id location of the @a dc in the database

359 | * @param dc struct of inconsistencies

360 |* @return #GNUNET_OK to continue to iterate, #GNUNET_SYSERR to stop iterating
361 | */

362 |static enum GNUNET_GenericReturnValue

363 |process_{kebab_case} (void *cls,

364 uinté4_t serial_id,

365 const struct

366 TALER_AUDITORDB_{camelCase}
367 *dc)

368 |{{

369 json_t *list = cls;
370 json_t *obj;

371

372 obj = GNUNET_SON_PACK (
373

374 {pl}

375

376)

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

A. Appendices

GNUNET_break (o ==
json_array_append_new (list,
obj));
return GNUNET_OK;
1
/*«x-
*
* @param rh context of the handler
* @param connection the MFD connection to handle
* @param[in ,out] connection_cls the connection’s closure (can be updated)
* @param upload_data upload data
* @param[in ,out] upload_data_size number of bytes (left) in @a upload_data
* @return MD result code
o/
MHD_RESULT
TAH_{screaming_snake_case}_handler_get (struct TAH_RequestHandler *rh,

struct MHD_Connection *
connection,
void **connection_cls,
const char *upload_data,
size_t *upload_data_size,
const char *const args([])
{{
json_t *ja;
enum GNUNET_DB_QueryStatus gs;

(void) rh;
(void) connection_cls;
(void) upload_data;
(void) upload_data_size;
if (GNUNET_SYSERR ==
TAH_plugin—preflight (TAH_plugin—cls))
{{
GNUNET _break (o) ;
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR,
TALER_EC_GENERIC_DB_SETUP_FAILED,
NULL) ;
1
ja = json_array ();
GNUNET _break (NULL != ja);

inté4_t limit = —20;
uint64_t offset;

TALER_MHD_parse_request_snumber (connection,
"limit",
&limit);

if (limit < o)
offset = INT64_MAX;
else
offset = o;

TALER_MHD_parse_request_number (connection,
"offset",
&offset) ;

A. Appendices

439 bool return_suppressed = false;

440

441 struct GNUNET_JSON_Specification spec[] = {{

442 GNUNET_JSON_spec_bool ("return_suppressed"”, &return_suppressed),
443 GNUNET_JSON_spec_end ()

444 | 3k

445

446 // read the input json

447 json_t *json_in;

448 {{

449 enum GNUNET_GenericReturnValue res;

450

451 res = TALER_MHD_parse_post_json (connection,

452 connection_cls,
453 upload_data,

454 upload_data_size,
455 &json_in) ;

456 if (GNUNET_SYSERR == res)

457 return MHDNO;

458 if ((GNUNETNO == res) ||

459 (NULL == json_in))

460 return MHD_YES;

461 res = TALER_MHD_parse_json_data (connection,

462 json_in,

463 spec) ;

464 if (GNUNET_SYSERR == res)

465 {{

466 json_decref (json_in);

467 return MHDNO; /* hard failure */
468 1}

469 if (GNUNETNO == res)

470 {{

471 json_decref (json_in);

472 return MHD_YES; /* failure */
473 1}

474 1}

475

476 gs = TAH_plugin—>get_{snake_case} (

477 TAH_plugin—cls ,

478 limit,

479 offset,

480 return_suppressed,

481 &process_{snake_case},

482 ja);

483

484 if (o > gs)

485 {{

486 GNUNET _break (GNUNET_DB_STATUS HARD_ERROR == gs) ;
487 json_decref (ja);

488 TALER LOG_WARNING (

489 "Failed to handle GET /{kebab_case}\n");

490 return TALER_MHD_reply_with_error (connection,
491 MHD_HTTP_INTERNAL_SERVER_ERROR,
492 TALER_EC_GENERIC_DB_FETCH_FAILED,
493 "{kebab_case}") ;
494 1}

495 return TALER_ MHD_REPLY JSON_PACK (

496 connection,

497 MHD_HTTP_OK,

498 GNUNET_JSON_pack_array_steal ("{kebab_case}",

499 ja));

500 |}}

A. Appendices

501
502
503 o
504
505 return ret
506
507 |def taler_auditor_httpd_xyz_get_h_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

508

509 ret = £"""

510

511 {license}

512

513 #ifndef SRC_TALER AUDITOR_HTTPD_{screaming_snake_case}_GET_H
514 |#define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_GET_H

515

516 |#include <gnunet/gnunet_util_Llib.h>
517 |#include <microhttpd.h>
518 |#include "taler—auditor—httpd.h"

519

520 |/**

521 |* Initialize subsystem.

522 | */

523 |void

524 |TEAH_{screaming_snake_case}_GET_init (void);
525

526 |/**

527 | * Shut down subsystem.

528 |*/

529 |void

530 |TEAH_BAD_{screaming_snake_case}_GET_done (void);
531

532 |/**

533 |* Handle a "/{kebab_case}" request.

534 |*

535 |* @param rh context of the handler

536 |* @param connection the M-D connection to handle

537 |* @param[in,out] connection_cls the connection’s closure (can be updated)
538 |* @param upload_data upload data

539 |* @param[in,out] upload_data_size number of bytes (left) in @a upload_data
540 |* @return M-D result code

541 |*/

542 |MHD_RESULT

543 |TAH_{screaming_snake_case}_handler_get (struct TAH_RequestHandler *rh,

544 struct MHD_Connection *
545 connection,

546 void **connection_cls,

547 const char *upload_data,
548 size_t *upload_data_size,
549 const char *const args([]);
550

551

552 |#endif // SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_GET_H
553
554
555 o
556
557 return ret
558
559 |def taler_auditor_httpd_xyz_del_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

A. Appendices

ret = £"""

{license}

#include "taler—auditor—httpd_{kebab_case}—del.h"

MHD_RESULT
TAH_{screaming_snake_case}_handler_delete (struct TAH_RequestHandler *rh,

struct MHD_Connection *
connection,

void **connection_cls,
const char *upload_data,
size_t *upload_data_size,
const char *const args([])

{f

MHD_RESULT res;
enum GNUNET_DB_QueryStatus gs;

uint6é4_t row_id;

if (args[1] != NULL)
row_id = atoi (args[1]);
else
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_BAD_REQUEST,
// TODO: not the correct ec
TALER_EC_AUDITOR_DEPOSIT_CONFIRMATION_SIGNATURE_INVALID,
"exchange signature invalid");

if (GNUNET_SYSERR ==
TAH_plugin—preflight (TAH_plugin—cls))
{f
GNUNET _break (o) ;
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR,
TALER_EC_GENERIC_DB_SETUP_FAILED,
NULL) ;
H

// execute the transaction
gs = TAH_plugin—>delete_{snake_case} (TAH_plugin—cls,
row_id) ;

if (o == qgs)
{f
// goes in here if there was an error with the transaction
GNUNET _break (GNUNET_DB_STATUS HARD_ERROR == gs) ;
TALER LOG_WARNING (
"Failed to handle DELETE /{kebab_case}/ %s",
args[1]);
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_NOT_FOUND,
// TODO: not the correct ec
TALER_EC_AUDITOR_DEPOSIT_CONFIRMATION_SIGNATURE_INVALID,
"exchange signature invalid");

1}

// on success?

623
624
625
626
627
628
629
630
631
632
633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

A. Appendices

return TALER_ MHD_REPLY_JSON_PACK (connection,
MHD_HTTP-NO_CONTENT,
GNUNET_JSON_pack_string ("status",
"{screaming_snake_case}_OK")) ;

return res;

1

nwn

return ret

def taler_auditor_httpd_xyz_del_h_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

ret = f mmnn
{license}

#ifndef SRC_TALER AUDITOR _HTTPD_{screaming_snake_case}_DEL_H
#define SRC_TALER AUDITOR_HTTPD_{screaming_snake_case}_DEL_H

#include <microhttpd.h>
#include "taler—auditor—httpd.h"

/-x-*
* Initialize subsystem.
&/
void
TEAH_{screaming_snake_case}_DELETE_init (void);

/**
* Shut down subsystem.
&
void
TEAH_{screaming_snake_case}_DELETE_done (void);

/-x-*
* Handle a "/{kebab_case}" request. Parses the JSON, and, if
* successful, checks the signatures and stores the result in the DB.
*
* @param rh context of the handler
* @param connection the M-D connection to handle
* @param[in ,out] connection_cls the connection’s closure (can be updated)
* @param upload_data upload data
* @param[in ,out] upload_data_size number of bytes (left) in @a upload_data
* @return M-D result code
4
MHD_RESULT
TAH_{screaming_snake_case}_handler_delete (struct TAH_RequestHandler *rh,
struct MHD_Connection *
connection,
void **connection_cls,
const char *upload_data,
size_t *upload_data_size,
const char *const args([]);

#endif // SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_DEL_H

684
685
686
687
688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

A. Appendices

nnn

return ret

def taler_auditor_httpd_xyz_upd_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

ret = £"""
{license}

#include "platform.h"

#include <gnunet/gnunet_util_Llib.h>

#include <gnunet/gnunet_json_lib.h>

#include <jansson.h>

#include <microhttpd.h>

#include <pthread.h>

#include "taler_json_lib.h"

#include "taler_mhd_Llib.h"

#include "taler—auditor—httpd.h"

#include "taler—auditor—httpd_{kebab_case}—upd.h"

MHD_RESULT
TAH_{screaming_snake_case}_handler_update (

struct TAH_RequestHandler *rh,

struct MHD_Connection *connection,

void **connection_cls,

const char *upload_data,

size_t *upload_data_size,

const char *const args([])

{f
enum GNUNET_DB_QueryStatus gs;

if (GNUNET_SYSERR ==
TAH_plugin—preflight (TAH_plugin—cls))
{{
GNUNET _break (o) ;
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR,
TALER_EC_GENERIC_DB_SETUP_FAILED,
NULL) ;
I

struct TALER_AUDITORDB_Generic_Update gu;
struct GNUNET_JSON_Specification spec[] = {{

GNUNET_JSON_spec_uint64 ("row_id", &gu.row_id),
GNUNET_JSON_spec_bool ("suppressed", &gu.suppressed),

GNUNET_JSON_spec_end ()
I

json_t *json;

(void) rh;

(void) connection_cls;
(void) upload_data;
(void) upload_data_size;
{f

enum GNUNET_GenericReturnValue res;

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

A. Appendices

res = TALER_MHD_parse_post_json (connection,
connection_cls,
upload_data,
upload_data_size,
&fson) ;
if (GNUNET_SYSERR == res)
return MHDNO;
if ((GNUNETNO == res) ||
(NULL == json))
return MHD_YES;
res = TALER_MHD_parse_json_data (connection,
json,
spec) ;
if (GNUNET_SYSERR == res)
{{
json_decref (json);
return MHDNO; /* hard failure */

if (GNUNETZNO == res)

json_decref (json);
return MHD_YES; /* failure */
1
1

/* execute transaction */
gs = TAH_plugin—update_{snake_case} (TAH_plugin—cls, &gu) ;

GNUNET_JSON_parse_free (spec) ;
json_decref (json);

MHD_RESULT ret = MHDNO;

switch (gs)
{f
case GNUNET_DB_STATUS HARD_ERROR:
GNUNET _break (o) ;
ret = TALER_MHD_reply_with_error (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR,
TALER_EC_GENERIC_DB_STORE_FAILED,
"update_account") ;
break;
case GNUNET_DB_STATUS_SOFT_ERROR:
GNUNET _break (o) ;
ret = TALER_MHD_reply_with_error (connection,
MHD_HTTP_INTERNAL_SERVER_ERROR,
TALER_EC_GENERIC_INTERNAL_INVARIANT_FAILURE,
"unexpected serialization problem");
break;
case GNUNET_DB_STATUS_SUCCESS_NO_RESULTS:
return TALER_MHD_reply_with_error (connection,
MHD_HTTP_NOT_FOUND,
TALER_EC_MERCHANT_GENERIC_ACCOUNT_UNKNOWN,
"no updates executed") ;
break;
case GNUNET_DB_STATUS_SUCCESS_ONE_RESULT:
ret = TALER_MHD_reply_static (connection,
MHD_HTTP_NO_CONTENT,
NULL,
NULL,
o);
break;

A. Appendices

807 1}
808
809 return ret;
810 |}}

811
812 mnmnn
813
814 return ret
815
816 |def taler_auditor_httpd_xyz_upd_h_new(snake_case, screaming_snake_case, kebab_case,
camelCase, pl):

817 ret = £"""
818

819 {license}
820

821 |#ifndef SRC_TALER AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
822 |#define SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
823
824
825 |#include <microhttpd.h>

826 |#include "taler—auditor—httpd.h"
827
828 |MHD_RESULT

829 |TAH_{screaming_snake_case}_handler_update (struct TAH_RequestHandler *rh,

830 struct MHD_Connection *
831 connection,

832 void **connection_cls,
833 const char *upload_data,
834 size_t *upload_data_size,
835 const char *const args([]);
836

837 |#endif // SRC_TALER_AUDITOR_HTTPD_{screaming_snake_case}_UPD_H
838

839

840 o

841 return ret

842

843 |def httpd(words, comp):

844

845 pl = nn

846 for w in words.items():

847 pl += spjs(wl0], w[1]) + ", \n"

848

849 sc = "_".join(comp)

850 ssc = "_".join(map(str.upper,comp))

851 kc = "-".join(comp)

852 cc = "". join(map(str.capitalize,comp))

853

854 p = taler_auditor_httpd_xyz_put_new(sc,ssc,kc,cc,pl)
855

856 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-put.c","w+")
857 f.write(p)

858 f.close()

859

860 p = taler_auditor_httpd_xyz_put_h_new(sc,ssc,kc,cc,pl)
861

862 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-put.h","w+")
863 f.urite(p)

864 f.close()

865

866 pl = nn

867 for w in words.items():

A. Appendices

868 pl += pkjs(w[0], w[1]) + ", \n"

869

870 p = taler_auditor_httpd_xyz_get_new(sc,ssc,kc,cc,pl)

871

872 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-get.c","w+")
873 f.write(p)

874 f.close()

875

876 p = taler_auditor_httpd_xyz_get_h_new(sc,ssc,kc,cc,pl)

877

878 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-get.h", "w+")
879 f.urite(p)

880 f.close()

881

882 p = taler_auditor_httpd_xyz_del_new(sc,ssc,kc,cc,pl)

883

884 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-del.c","w+")
885 f.write(p)

886 f.close()

887

888 p = taler_auditor_httpd_xyz_del_h_new(sc,ssc,kc,cc,pl)

889

890 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-del.h","w+")
891 f.write(p)

892 f.close()

893

894 p = taler_auditor_httpd_xyz_upd_new(sc,ssc,kc,cc,pl)

895

896 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-upd.c","w+")
897 f.write(p)

898 f.close()

899

900 p = taler_auditor_httpd_xyz_upd_h_new(sc,ssc,kc,cc,pl)

901

902 f = open("taler-files/auditor/taler-auditor-httpd_" + kc + "-upd.h","w+")
903 f.write(p)

904 f.close()

905

906

907

908 |def pg_del(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
909

910 ret = £"""

911

912 {license}

913

914 |#include "pg_del_{snake_case}.h"
915

916 |#include "taler_pq_Llib.h"
917 |#include "pg_helper.h"
918
919 |enum GNUNET_DB_QueryStatus

920 |TAH_PG_del_{snake_case} (

921 void *cls,

922 uint64_t row_id)

923 | {{

924 struct PostgresClosure *pg = cls;

925 struct GNUNET_PQ_QueryParam params[] = {{

926 GNUNET_PQ_query_param_uint64 (&row_id) ,
927 GNUNET_PQ_query_param_end
928 1

929

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

A. Appendices

PREPARE (pg,
"auditor_delete_{snake_case}",
"DELETE"
" FROM auditor_{snake_case}"
" WHERE row_id=51;") ;
return GNUNET_PQ_eval_prepared_non_select (pg—>conn,
"auditor_delete_{snake_case}",
params) ;

H

nwn

return ret

def pg_del_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
ret = f mmnn

{license}

#ifndef SRC_PG_DEL_{screaming_snake_case}_H
#define SRC_PG_DEL_{screaming_snake_case}_H

#include "taler_util.h"
#include "taler_auditordb_plugin.h"

/*—x-
* Delete a row from the bad sig losses table.
*
* @param cls the @e cls of this struct with the plugin—specific state
* @param row_id row to delete
* @return query transaction status
Y
enum GNUNET_DB_QueryStatus
TAH_PG_del_{snake_case} (
void *cls,
uint6é4_t row_id) ;

#endif // SRC_PG_DEL_{screaming_snake_case}_H

nwn

return ret

def pg_upd(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
ret = £"""

{license}

#include "platform.h"
#include "taler_pq_lib.h"
#include "pg_helper.h"

#include "pg_update_{snake_case}.h"

/*
Update a given resource for now this only means suppressing
*/
enum GNUNET_DB_QueryStatus
TAH_PG_update_{snake_case} (
void *cls,

A. Appendices

992 const struct TALER_AUDITORDB_Generic_Update *gu)
993 |{{

994 struct PostgresClosure *pg = cls;

995 struct GNUNET_PQ_QueryParam params[] = {{

996 GNUNET_PQ_query_param_uintb4 (&gu—>row_id) ,
997 GNUNET_PQ_query_param_bool (gu—>suppressed),
998 GNUNET_PQ_query_param_end

999 135

1000
1001
1002 PREPARE (pg,

1003 "update_{snake_case}",

1004 "UPDATE auditor_{snake_case} SET"

1005 " suppressed=$2"

1006 " WHERE row_id=S1") ;

1007 return GNUNET_PQ_eval_prepared_non_select (pg—>conn,

1008 "update_{snake_case}",
1009 params) ;

1010 |}}

1011
1012
1013 nmn
1014
1015 return ret
1016
1017 |def pg_upd_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl):
1018

1019 ret = £"""
1020

1021 {license}
1022

1023 |#ifndef SRC_PG_UPDATE_{screaming_snake_case}_H
1024 |#define SRC_PG_UPDATE_{screaming_snake_case}_H
1025
1026 |#include "taler_util.h"

1027 |#include "taler_auditordb_plugin.h"
1028
1029 |enum GNUNET_DB_QueryStatus

1030 |TAH_PG_update_{snake_case} (

1031 void *cls,

1032 const struct TALER_AUDITORDB_Generic_Update *dc) ;
1033
1034 |#endif // SRC_PG_UPDATE_{screaming_snake_case}_H
1035
1036
1037 nmn
1038
1039 return ret
1040
1041 |def pg_insert(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1042

1043 ret = £"""
1044

1045 {license}
1046

1047 |#include "platform.h"

1048 |#include "taler_pq_Llib.h"
1049 |#include "pg_helper.h"

1050
1051 |#include "pg_insert_{snake_case}.h"
1052
1053 |enum GNUNET_DB_QueryStatus

A. Appendices

1054 | TAH_PG_insert_{snake_case} (

1055 void *cls,

1056 const struct TALER_AUDITORDB_{camelCase} *dc)
1057 |{{

1058 struct PostgresClosure *pg = cls;

1059 struct GNUNET_PQ_QueryParam params[] = {{
1060
1061 {pl}
1062
1063 GNUNET_PQ_query_param_end
1064 1

1065
1066 PREPARE (pg,

1067 "auditor_{snake_case}_insert",

1068 "INSERT INTO auditor_{snake_case} "

1069 {sql_i}

1070)

1071 return GNUNET_PQ_eval_prepared_non_select (pg—>conn,

1072 "auditor_{snake_case}_insert",
1073 params) ;

1074 | }}

1075
1076 nmn
1077
1078 return ret
1079
1080 |def pg_insert_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1081
1082 ret = £"""
1083
1084 {license}
1085
1086
1087
1088 |#ifndef SRC_PG_INSERT_{screaming_snake_case}_H
1089 |#define SRC_PG_INSERT_{screaming_snake_case}_H
1090
1091 |#include "taler_util.h"

1092 |#include "taler_auditordb_plugin.h"

1093

1094

1095 |/**

1096 * Insert information about a bad sig loss into the database.
1097 w

1098 * @param cls the @e cls of this struct with the plugin—specific state
1099 * @param dc deposit confirmation information to store

1100 * @return query result status

1101 | */

1102 |enum GNUNET_DB_QueryStatus

1103 | TAH_PG_insert_{snake_case} (

1104 void *cls,

1105 const struct TALER_ AUDITORDB_{camelCase} *dc);

1106
1107 |#endif // SRC_PG_INSERT_{screaming_snake_case}_H
1108
1109
1110 nmn
1111
1112 return ret
1113
1114 | def pg_get(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

A. Appendices

ret = £"""

{license}

#include "platform.h"
#include "taler_error_codes.h"
#include "taler_dbevents.h"
#include "taler_pq_Llib.h"
#include "pg_helper.h"

#include "pg_get_{snake_case}.h"

struct {camelCase}Context

{f

/**

* Function to call for each bad sig loss.
@

TALER_AUDITORDB_{camelCase} Callback cb;

/**

* Closure for @e cb
4
void *cb_cls;

/-x-*

* Plugin context.
*/

struct PostgresClosure *pg;

/-x—*

* Query status to return.
*/

enum GNUNET_DB_QueryStatus gs;

18

/**

*
*
*
*
*

*

*

Helper function for #TAH_PG_get_{snake_case}() .
To be called with the results of a SELECT statement
that has returned @a num_results results.

@param cls closure of type ‘struct {camelCase}Context *°
@param result the postgres result
@param num_results the number of results in @a result

Y

st

atic void

{snake_case}_cb (void *cls,

{{

PGresult *result,
unsigned int num_results)

struct {camelCase}Context *dcc = cls;
struct PostgresClosure *pg = dcc—=pg;

for (unsigned int i = o; i < num_results; i++)
{f

uint64_t serial_id;

struct TALER_ AUDITORDB_{camelCase} dc;

struct GNUNET_PQ_ResultSpec rs[] = {{

A. Appendices

1178
1179 GNUNET_PQ_result_spec_uint64 ("row_id", &serial_id),
1180
1181 {pl}
1182
1183 GNUNET_PQ_result_spec_end
1184 e

1185 enum GNUNET_GenericReturnValue rval;
1186
1187 if (GNUNET_OK !=

1188 GNUNET_PQ_extract_result (result,
1189 rs,

1190 i))

1191 {

1192 GNUNET _break (o) ;

1193 dcc—qs = GNUNET_DB_STATUS HARD_ERROR;
1194 return;

1195 1}

1196
1197 dcc—qs = | + 1;
1198
1199 rval = dcc—cb (dcc—cb_cls,
1200 serial_id,

1201 &dc) ;

1202 GNUNET_PQ_cleanup_result (rs);
1203 if (GNUNET_OK != rval)

1204 break;

1205 I

1206 |}}

1207
1208
1209 |enum GNUNET_DB_QueryStatus
1210 |TAH_PG_get_{snake_case} (
1211 void *cls,

1212 int64_t limit,
1213 uint64_t offset,
1214 bool return_suppressed, // maybe not needed

1215 TALER_AUDITORDB_{camelCase} Callback cb,
1216 void *cb_cls)

1217 | {{

1218
1219 struct PostgresClosure *pg = cls;

1220 struct GNUNET_PQ_QueryParam params[] = {{

1221 GNUNET_PQ_query_param_uint64 (&offset),
1222 GNUNET_PQ_query_param_bool (return_suppressed),
1223 GNUNET_PQ_query_param_int64 (&limit),
1224 GNUNET_PQ_query_param_end

1225 1k

1226 struct {camelCase}Context dcc = {{

1227 .cb = cb,

1228 .cb_cls = ch_cls,

1229 .pg = pg

1230 1

1231 enum GNUNET_DB_QueryStatus gs;

1232

1233 PREPARE (pg,

1234 "auditor_{snake_case}_get_desc",
1235 "SELECT"

1236 {sql_i}

1237 " FROM auditor_{snake_case}"
1238 " WHERE (row_id < S1)"

1239 " AND (S2 OR suppressed is false)"

A. Appendices

1240 " ORDER BY row_id DESC"

1241 " LIMIT S3"

1242 IE

1243 PREPARE (pg,

1244 "auditor_{snake_case}_get_asc",

1245 "SELECT"

1246 {sql_i}

1247 " FROM auditor_{snake_case}"

1248 " WHERE (row_id > S1)"

1249 " AND (S2 OR suppressed is false)"

1250 " ORDER BY row_id ASC"

1251 " LIMIT S3"

1252)

1253 gs = GNUNET_PQ_eval_prepared_multi_select (pg—>conn,

1254 (Limit > o)

1255 ? "auditor_{snake_case}_get_asc"
1256 : "auditor_{snake_case}_get_desc",
1257 params,

1258 &{snake_case}_cb,
1259 &dcc) ;

1260

1261 if (gs > o)

1262 return dcc.gs;

1263 GNUNET _break (GNUNET_DB_STATUS HARD ERROR != qs);
1264 return gs;

1265 | }}

1266
1267
1268 mnmmn
1269
1270 return ret
1271
1272 |def pg_get_h(snake_case, screaming_snake_case, kebab_case, camelCase, pl, sql_i):
1273

1274 ret = £"""
1275

1276 {license}
1277

1278 |#ifndef SRC_PG_GET_{screaming_snake_case}_H
1279 |#define SRC_PG_GET_{screaming_snake_case}_H
1280
1281 |#include "taler_util.h"

1282 |#include "taler_json_Llib.h"

1283 |#include "taler_auditordb_plugin.h"

1284

1285 |/**

1286 * Get information about {kebab_case} from the database.
1287 *

1288 * @param cls the @e cls of this struct with the plugin—specific state
1289 * @param start_id row/serial ID where to start the iteration (o from
1290 e the start, exclusive, i.e. serial_ids must start from 1)
1291 * @param return_suppressed should suppressed rows be returned anyway?
1292 * @param cb function to call with results

1293 * @param cb_cls closure for @a cb

1294 * @return query result status

1295 24

1296 |enum GNUNET_DB_QueryStatus

1297 |TAH_PG_get_{snake_case} (

1298 void *cls,

1299 inté4_t limit,

1300 uint64_t offset,

1301 bool return_suppressed,

A. Appendices

1302 TALER_AUDITORDB_{camelCase} Callback cb,
1303 void *cb_cls);

1304

1305 |#endif // SRC_PG_GET_{screaming_snake_case}_H
1306

1307

1308 B

1309

1310 return ret

1311

1312

1313 |def pg_auditor(words, comp):

1314

1315 pl=""

1316 for w in words.items():

1317 pl += qupq(w[0], w[1]) + ", \n"

1318

1319

1320 sql_i = "

1321 sql_c = 0

1322 sql_a = ""

1323 for w in words.items():

1324 if (sql_c == 0):

1325 sql_i += "\"(," + w[0] + ",\"\n"
1326 else:

1327 sql_i += "\"" + w[0] + ",\"\n"
1328 sql_c += 1

1329 sql_a += f£"${sql_c},"

1330

1331 sql_i = sql_i.removesuffix(",\"\n") + "\"\n"
1332 sql_a = sql_a.removesuffix(",")

1333 sql_i += £"\")_VALUES, ({sql_a});\""
1334

1335

1336 sc = "_".join(comp)

1337 ssc = "_".join(map(str.upper,comp))
1338 kc = "-".join(comp)

1339 cc = "". join(map(str.capitalize,comp))
1340

1341

1342 plb = ""

1343 for w in words.items():

1344 if (w[0] == "row_id"):

1345 continue

1346 pl_b += qupq(w[0], w[1]) + ", \n"
1347

1348 p = pg_insert(sc,ssc,kc,cc,pl_b,sql_i)
1349

1350 f = open("taler-files/auditordb/pg_insert_" + sc + ".c","w+")
1351 f.write(p)

1352 f.close()

1353

1354 p = pg_insert_h(sc,ssc,kc,cc,pl_b,sql_i)
1355

1356 f = open("taler-files/auditordb/pg_insert_" + sc + ".h","w+")
1357 f.urite(p)

1358 f.close()

1359

1360

1361 sql_i = ""

1362 for w in words.items():

1363 sql_i += "\"," + w[0] + ",\"\n"

A. Appendices

1364

1365 sql_i = sql_i.removesuffix(",\"\n") + "\""
1366

1367

1368 sc = "_".join(comp)

1369 ssc = "_".join(map(str.upper,comp))

1370 kc = "-".join(comp)

1371 cc = "". join(map(str.capitalize,comp))
1372

1373 pl_c =""

1374 for w in words.items():

1375 if (w[0] == "row_id"):

1376 continue

1377 pl_c += sppq(w[0], w[1]l) + ",\n"

1378

1379 p = pg_get(sc,ssc,kc,cc,pl_c,sql_i)

1380

1381 f = open("taler-files/auditordb/pg_get_" + sc + ".c","w+")
1382 f.write(p)

1383 f.close()

1384

1385 p = pg_get_h(sc,ssc,kc,cc,pl_c,sql_i)

1386

1387 f = open("taler-files/auditordb/pg_get_" + sc + ".h", "w+")
1388 f.write(p)

1389 f.close()

1390

1391

1392

1393 p = pg_upd(sc,ssc,kc,cc,pl)

1394

1395 f = open("taler-files/auditordb/pg_update_" + sc + ".c","w+")
1396 f.write(p)

1397 f.close()

1398

1399 p = pg_upd_h(sc,ssc,kc,cc,pl)

1400

1401 f = open("taler-files/auditordb/pg_update_" + sc + ".h","w+")
1402 f.urite(p)

1403 f.close()

1404

1405

1406

1407 p = pg_del(sc,ssc,kc,cc,pl)

1408

1409 f = open("taler-files/auditordb/pg_del_" + sc + ".c","w+")
1410 f.urite(p)

1411 f.close()

1412

1413 p = pg_del_h(sc,ssc,kc,cc,pl)

1414

1415 f = open("taler-files/auditordb/pg_del_" + sc + ".h","w+")
1416 f.write(p)

1417 f.close()

1418

1419

1420 |def taler_auditor_httpd(amalgamation) :

1421 print ("taler-auditor-httpd")

1422

1423 for a in amalgamation:

1424

1425 sc = a[2]

A. Appendices

1426 ssc = a[3]

1427 kc = al4]

1428 cc = al[5]

1429

1430 print(£"""

1431 #include "taler—auditor—httpd_{kc}—del.h"
1432 #include "taler—auditor—httpd_{kc}—put.h"
1433 #include "taler—auditor—httpd_{kc}—get.h"
1434 #include "taler—auditor—httpd_{kc}—upd.h"
1435 "

1436

1437 |def plugin_auditordb_postgres(amalgamation) :

1438

1439 print ("plugin_auditordb_postgres:\n")

1440

1441 for a in amalgamation:

1442

1443 sc = a[2]

1444 ssc = al3]

1445 kc = a[4]

1446 cc = al[5]

1447

1448

1449

1450 print(£"""

1451 #include "pg_get_{sc}.h"

1452 #include "pg_del_{sc}.h"

1453 #include "pg_insert_{sc}.h"

1454 #include "pg_update_{sc}.h"

1455 " un)

1456

1457 print(£"""

1458 plugin—delete_{sc} = &TAH_PG_del_{sc};
1459 plugin—=insert_{sc} = &TAH_PG_insert_{sc};
1460 plugin—get_{sc} = &TAH_PG_get_{sc};

1461 plugin—update_{sc} = &TAH_PG_update_{sc};
1462 ey

1463

1464 |def taler_auditordb_plugin(amalgamation):

1465

1466 print("taler_auditordb_plugin.h:\n")

1467

1468 for a in amalgamation:

1469

1470 sc = a[2]

1471 ssc = al[3]

1472 kc = al4]

1473 cc = al[5]

1474

1475 words = al[0]

1476

1477

1478

1479 str_content = ""

1480 for w in words.items():

1481 if w[0] == "row_id":

1482 continue

1483 str_content += c_types[w[1]] + "," + w[0] + ";\n"
1484

1485 print(£"""

1486 struct TALER_AUDITORDB_{cc}

1487 i

A. Appendices

1488 unsigned int row_id;
1489 {str_content}

1490 1

1491 nn N)

1492
1493 print (£"""

1494 typedef enum GNUNET_GenericReturnValue
1495 (*TALER_AUDITORDB_{cc} Callback) (

1496 void *cls,

1497 uintb4_t serial_id,

1498 const struct TALER AUDITORDB_{cc} *dc);
1499 "y

1500
1501 print(£"""

1502 enum GNUNET_DB_QueryStatus
1503 (*get_{sc})(

1504 void *cls,

1505 inté4_t limit,
1506 uinté4_t offset,
1507 bool return_suppressed,

1508 TALER_AUDITORDB_{cc} Callback cb,
1509 void *cb_cls);

1510 nn Il)

1511
1512 print(£"""

1513 enum GNUNET_DB_QueryStatus
1514 (*delete_{sc}) (

1515 void *cls,

1516 uinté4_t row_id) ;

1517 nn Il)

1518
1519 print(£"""

1520 enum GNUNET_DB_QueryStatus

1521 (*insert_{sc}) (

1522 void *cls,

1523 const struct TALER AUDITORDB_{cc} *dc);
1524 nn Il)

1525
1526
1527 print(£"""

1528 enum GNUNET_DB_QueryStatus

1529 (*update_{sc}) (

1530 void *cls,

1531 const struct TALER_AUDITORDB_Generic_Update *gu) ;
1532 nn ”)

1533

1534 |def makefile_auditordb(amalgamation):
1535

1536

1537 print ("\nmakefile auditordb\n")
1538

1539 for a in amalgamation:

1540

1541 sc = al2]

1542 ssc = al[3]

1543 kc = al[4]

1544 cc = al[5]

1545

1546 print(£"""

1547 |pg_get_{sc}.c pg_get_{sc}.h \\
1548 |pg_del_{sc}.c pg_del_{sc}.h \\
1549 |pg_insert_{sc}.c pg_insert_{sc}.h \\

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

A. Appendices

pg_update_{sc}.c pg_update_{sc}.h \\
nn Il)

def makefile_auditor (amalgamation):

print ("\nmakefile auditor\n")
for a in amalgamation:

sc = a[2]

ssc = a[3]

kc = a[4]
cc = al[5b]

print (£"""

taler—auditor—httpd_{kc}—del.c taler—auditor—httpd_{kc}—del.h \\
taler—auditor—httpd_{kc}—put.c taler—auditor—httpd_{kc}—put.h \\
taler—auditor—httpd_{kc}—get.c taler—auditor—httpd_{kc}—get.h \\
taler—auditor—httpd_{kc}—upd.c taler—auditor—httpd_{kc}—upd.h \\

nn n)

def taler_auditor_httpd_again(amalgamation) :

print("\ntaler-auditor-httpd\n")
for a in amalgamation:

sc = al2]
ssc = a[3]
kc = a[4]
cc = al[5b]

print (f nmn
{{ "/{kc}", MHD_HTTP_.METHOD_GET,
"application/json",
NULL, o,
&TAH_{ssc}_handler_get,
MHD_HTTPOK }},
{{ "/{kc}", MHD_HTTP_METHOD_PUT,
"application/json",
NULL, o,
&TAH_{ssc}_handler_put,
MHD_HTTPOK }},
{{ "/{kc}", MHD_HTTP_METHOD_DELETE,
"application/json",
NULL, o,
&TAH_{ssc}_handler_delete,
MHD_HTTPOK }},
{{ "/{kc}", MHDHTTP_METHOD_PATCH,
"application/json",
NULL, o,
&TAH_{ssc}_handler_update,
MHD_HTTPOK }},
lll'll)

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

A. Appendices

def main():
amalgamation = list()
directory = os.fsencode("taler-files/sql")
for file in os.listdir(directory):
words = {}

name = os.fsdecode(file)
path = os.fsdecode(directory)

if (name.find("DS-Store")):
continue

nm = name.removesuffix(".sql")
comp = list(filter(lambda x: x != "0002-auditor",nm.split(’_’)))

sql = open(path + ’/’ + name, ’r’, encoding=’utf-8’, errors=’ignore’)
lines = sql.readlines()

i=0
for line in lines:
#find point of interest
if (line.find("CREATE_ TABLE") < 0):
i+=1
continue
else:
i+=1
skips one, but that is ok
exit = 0
for x in range(i,len(lines) - 1):
sql = lines[x]

if (sql.find(");") >= 0):
exit = 1

if (exit == 0):
sql = re.sub(r’[~\w\s]’, ’’, sql)

if (sql !'= ’\n’):
dingdong = sql.split(’,’)
bloop = list(filter(lambda x: x != ’’,dingdong))

#print (bloop)
words [bloop[0] .strip().lower ()] = bloop[1].strip().lower()

httpd(words, comp)
pg_auditor (words, comp)
copy paste

sc = "_".join(comp)

A. Appendices

1674 ssc = "_".join(map(str.upper,comp))
1675 kc = "-".join(comp)

1676 cc = "".join(map(str.capitalize,comp))
1677

1678 tpl = (words, comp, sc, ssc, kc, cc)
1679

1680 amalgamation.append (tpl)

1681

1682

1683

1684 taler_auditor_httpd(amalgamation)

1685

1686 plugin_auditordb_postgres(amalgamation)
1687

1688 taler_auditordb_plugin(amalgamation)
1689

1690 makefile_auditordb(amalgamation)

1691

1692

1693 makefile_auditor (amalgamation)

1694

1695 taler_auditor_httpd_again(amalgamation)
1696

1697

1698 |if __name__ == "__main__":

1699 main()

	Abstract
	Acknowledgements
	Introduction
	Motivation
	GNU Taler
	Real-Time GNU Taler Auditor
	Goals
	Scope

	Preliminaries
	GNU Taler actors
	The Exchange
	The Wallet
	The Merchant
	The Auditor

	GNU Taler Architecture
	GNU Taler Concepts
	Coins and Denominations
	Keys and Signatures
	Blind Signatures
	Wire Transfer
	Purse
	Reserves
	Revocation
	Recoup
	Dirty Coin
	Melt
	Refresh
	Reveal

	Auditor architecture
	Protocols and States
	Reserve
	Coin
	Deposit

	Description of Helpers
	Helper Aggregation
	Helper Coins
	Helper Deposits
	Helper Wire
	Helper Purses
	Helper reserves

	Solution Design
	Architecture
	Auditor database
	REST API
	SPA
	Data to Display

	Implementation
	Overview
	Implementation of tables
	Overview
	Monitoring Status
	Critical Errors
	Operational Status

	Interfaces
	REST API
	PostgreSQL C API

	TRIGGERS, LISTEN and NOTIFY
	Single Page Application
	Description
	Technologies
	Implementation
	Authentication
	Dashboards

	Discussion
	Approach
	Future Work

	Conclusion
	Bibliography
	List of Figures
	Glossary
	Appendices
	Project management
	Definition
	Methodology
	Organization
	Execution
	Completion

	Auditor REST API
	Python Scripts

